Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c.
545 - 544 = 544 x (54 - 1) = 544 x 53
Vậy 545 - 544 chia hết cho 53.
ta có:
A = {x\(\in\) R; -5 \(\le\) x < 7}
\(\Rightarrow\) A = [-5;7)
\(\Rightarrow\) \(C^A_R\) = (-\(\infty\);-5) \(\cup\) [7;+\(\infty\))
Đáp án: D
\(B=cos\frac{\pi}{7}.cos\left(\pi-\frac{4\pi}{7}\right).cos\left(\pi-\frac{2\pi}{7}\right)\)
\(B=cos\frac{\pi}{7}.cos\frac{2\pi}{7}.cos\frac{4\pi}{7}\)
\(B.sin\frac{\pi}{7}=sin\frac{\pi}{7}.cos\frac{\pi}{7}.cos\frac{2\pi}{7}.cos\frac{4\pi}{7}\)
\(B.sin\frac{\pi}{7}=\frac{1}{2}sin\frac{2\pi}{7}.cos\frac{2\pi}{7}.cos\frac{4\pi}{7}\)
\(B.sin\frac{\pi}{7}=\frac{1}{4}sin\frac{4\pi}{7}.cos\frac{4\pi}{7}=\frac{1}{8}sin\frac{8\pi}{7}\)
\(B.sin\frac{\pi}{7}=\frac{1}{8}sin\left(\pi+\frac{\pi}{7}\right)=-\frac{1}{8}sin\frac{\pi}{7}\)
\(\Rightarrow B=-\frac{1}{8}\)
\(cos\frac{\pi}{4}=2cos^2\frac{\pi}{8}-1\Rightarrow cos^2\frac{\pi}{8}=\frac{cos\frac{\pi}{4}+1}{2}\)
\(\Rightarrow cos^2\frac{\pi}{8}=\frac{2+\sqrt{2}}{4}\Rightarrow cos\frac{\pi}{8}=\frac{\sqrt{2+\sqrt{2}}}{2}\) (do \(0< \frac{\pi}{8}< \frac{\pi}{2}\) nên \(cos\frac{\pi}{8}>0\))
\(M=cos\frac{\pi}{7}-cos\frac{2\pi}{7}+cos\frac{3\pi}{7}\)
\(\Rightarrow2M.sin\frac{\pi}{7}=2sin\frac{\pi}{7}cos\frac{\pi}{7}-2sin\frac{\pi}{7}cos\frac{2\pi}{7}+2sin\frac{\pi}{7}cos\frac{3\pi}{7}\)
\(=sin\frac{2\pi}{7}-sin\frac{3\pi}{7}+sin\frac{\pi}{7}+sin\frac{4\pi}{7}-sin\frac{2\pi}{7}\)
\(=-sin\frac{3\pi}{7}+sin\frac{\pi}{7}+sin\left(\pi-\frac{3\pi}{7}\right)\)
\(=-sin\frac{3\pi}{7}+sin\frac{\pi}{7}+sin\frac{3\pi}{7}=sin\frac{\pi}{7}\)
\(\Rightarrow M=\frac{sin\frac{\pi}{7}}{2sin\frac{\pi}{7}}=\frac{1}{2}\)
Lần sau bạn nhớ ghi đề rõ ràng
Trong các phân số sau, những phân số nào biểu diễn số hữu tỉ \(\frac{3}{4}\)
Lời giải:
Vậy những phân số biểu diễn số hữu tỉ là :
Nguyễn Thế Bảo
ý "B" nữa cơ mà.
Ý a trên loigiaihay.com
- Xét \(sin\frac{x}{5}=0\Rightarrow C=...\)
- Với \(sin\frac{x}{5}\ne0\)
\(C.sin\frac{x}{5}=sin\frac{x}{5}.cos\frac{x}{5}.cos\frac{2x}{5}cos\frac{4x}{5}cos\frac{8x}{5}\)
\(=\frac{1}{2}sin\frac{2x}{5}cos\frac{2x}{5}cos\frac{4x}{5}cos\frac{8x}{5}\)
\(=\frac{1}{4}sin\frac{4x}{5}cos\frac{4x}{5}cos\frac{8x}{5}=\frac{1}{8}sin\frac{8x}{5}cos\frac{8x}{5}\)
\(=\frac{1}{16}sin\frac{16x}{5}\Rightarrow C=\frac{sin\frac{16x}{5}}{16.sin\frac{x}{5}}\)
\(D=sin\frac{x}{7}+sin\frac{5x}{7}+2sin\frac{3x}{7}\)
\(=2sin\frac{3x}{7}cos\frac{2x}{7}+2sin\frac{3x}{7}\)
\(=2sin\frac{3x}{7}\left(cos\frac{2x}{7}+1\right)=4cos^2\frac{x}{7}.sin\frac{3x}{7}\)
\(A=cos\frac{\pi}{7}cos\frac{3\pi}{7}cos\frac{5\pi}{7}=cos\frac{\pi}{7}cos\frac{4\pi}{7}cos\frac{2\pi}{7}\)
\(\Rightarrow A.sin\frac{\pi}{7}=sin\frac{\pi}{7}.cos\frac{\pi}{7}.cos\frac{2\pi}{7}cos\frac{4\pi}{7}\)
\(=\frac{1}{2}sin\frac{2\pi}{7}cos\frac{2\pi}{7}cos\frac{4\pi}{7}=\frac{1}{4}sin\frac{4\pi}{7}cos\frac{4\pi}{7}\)
\(=\frac{1}{8}sin\frac{8\pi}{7}=\frac{1}{8}sin\left(\pi+\frac{\pi}{7}\right)=-\frac{1}{8}sin\frac{\pi}{7}\)
\(\Rightarrow A=-\frac{1}{8}\)
\(B=sin6.cos48.cos24.cos12\)
\(B.cos6=sin6.cos6.cos12.cos24.cos48\)
\(=\frac{1}{2}sin12.cos12.cos24.cos48=\frac{1}{4}sin24.cos24.cos48\)
\(=\frac{1}{8}sin48.cos48=\frac{1}{16}sin96\)
\(=\frac{1}{16}sin\left(90+6\right)=\frac{1}{16}cos6\Rightarrow B=\frac{1}{16}\)
\(\left(7^{1997}-7^{1995}\right):\left(7.7^{1994}\right)\\ =\left(7^{1997}-7^{1995}\right):\left(7^{1+1994}\right)\\ =\left(7^{1997}-7^{1995}\right):7^{1995}\\ =\left(7^{1997}:7^{1995}\right)-\left(7^{1995}:7^{1995}\right)\\ =\left(7^{1997-1995}\right)-1\\ =7^2-1\\ =48\)