K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2020

=\(\frac{3x+5}{-x.\left(-x+5\right)}\)+\(\frac{25-x}{-5x+25}\)

=\(\frac{1x-25-x^2}{5x.\left(-\left(x-5\right)\right)}\)

=\(\frac{-\left(x^2-10x+25\right)}{5x.\left(-\left(x-5\right)\right)}\)

=\(\frac{x-5}{5x}\)

2 tháng 12 2015

phân tích lần ra , rồi rút gọn

2 tháng 12 2015

\(\left(\frac{3x-5}{x^2-5x}-\frac{x+5}{5x-25}\right):\frac{x^2-25}{x}\)

\(=\left[\frac{3x-5}{x\left(x-5\right)}-\frac{x+5}{5\left(x-5\right)}\right].\frac{x}{x^2-25}\)

\(=\left[\frac{\left(3x-5\right).5}{x\left(x-5\right).5}-\frac{\left(x+5\right).x}{5\left(x-5\right).x}\right].\frac{x}{x^2-25}\)

\(=\left[\frac{15x-25}{5x\left(x-5\right)}-\frac{x^2+5x}{5x\left(x-5\right)}\right].\frac{x}{\left(x-5\right)\left(x+5\right)}\)

\(=\frac{15x-25-x^2-5x}{5x\left(x-5\right)}.\frac{x}{\left(x-5\right)\left(x+5\right)}\)

\(=\frac{-x^2+10x-25}{5x\left(x-5\right)}.\frac{x}{\left(x-5\right)\left(x+5\right)}\)

\(=\frac{-\left(x-5\right)^2.x}{5x\left(x-5\right)\left(x-5\right)\left(x+5\right)}\)

\(=\frac{-1}{5\left(x+5\right)}\).

AH
Akai Haruma
Giáo viên
4 tháng 7 2018

1)

ĐK: \(x,y\neq 0\); \(x+y\neq 0\)

\(\frac{x^2-y^2}{6x^2y^2}: \frac{x+y}{12xy}\)

\(=\frac{x^2-y^2}{6x^2y^2}. \frac{12xy}{x+y}=\frac{(x-y)(x+y).12xy}{6x^2y^2(x+y)}=\frac{2(x-y)}{xy}\)

2) ĐK: \(x\neq \frac{\pm 1}{2}; 0; 1\)

\(\frac{5x}{2x+1}: \frac{3x(x-1)}{4x^2-1}=\frac{5x}{2x+1}.\frac{4x^2-1}{3x(x-1)}\)

\(=\frac{5x(2x-1)(2x+1)}{(2x+1).3x(x-1)}=\frac{5(2x-1)}{3(x-1)}\)

AH
Akai Haruma
Giáo viên
4 tháng 7 2018

3) ĐK: \(x\neq \frac{\pm 1}{2}; 0\)

\(\left(\frac{2x-1}{2x+1}-\frac{2x-1}{2x+1}\right): \frac{4x}{10x-5}=0: \frac{4x}{10x-5}=0\)

4) ĐK: \(x\neq \frac{\pm 1}{3}\)

\(\frac{2}{9x^2+6x+1}-\frac{3x}{9x^2-1}=\frac{2}{(3x+1)^2}-\frac{3x}{(3x-1)(3x+1)}\)

\(=\frac{2(3x-1)}{(3x+1)^2(3x-1)}-\frac{3x(3x+1)}{(3x-1)(3x+1)^2}\)

\(=\frac{6x-2-9x^2-3x}{(3x+1)^2(3x-1)}=\frac{-9x^2+3x-2}{(3x-1)(3x+1)^2}\)

5) ĐK: \(x\neq \pm 1; \frac{-7\pm \sqrt{89}}{4}\)

\(\left(\frac{5}{x^2+2x+1}+\frac{2x}{x^2-1}\right): \frac{2x^2+7x-5}{3x-3}\)

\(=\left(\frac{5}{(x+1)^2}+\frac{2x}{(x-1)(x+1)}\right). \frac{3(x-1)}{2x^2+7x-5}\)

\(=\frac{5(x-1)+2x(x+1)}{(x-1)(x+1)^2}. \frac{3(x-1)}{2x^2+7x-5}=\frac{2x^2+7x-5}{(x+1)^2(x-1)}.\frac{3(x-1)}{2x^2+7x-5}\)

\(=\frac{3}{(x+1)^2}\)

4 tháng 12 2017
  1. Tập xác định của hàm số

  2. 2

    Giao điểm với trục hoành (OX)

  3. 3

    Giao điểm với trục tung (OY)

  4. 4

    Giới hạn hàm số tại vô cực

  5. 5

    Khảo sát tính chẵn lẻ của hàm số

  6. 6

    Giá trị của đạo hàm

  7. 7

    Đạo hàm bằng 0 tại

  8. 8

    Hàm số tăng trên

  9. 9

    Hàm số giảm trên

  10. 10

    Giá trị nhỏ nhất của hàm số

  11. 11

    Giá trị lớn nhất của hàm số

5 tháng 12 2017

Bạn dưới đang giải theo cách làm THPT phải không? Cho mình hỏi \(\infty\)là denta à?

14 tháng 3 2019

Pt đã cho \(\Leftrightarrow3x+10x+8+2x+20x+48=9x+6x-36\Leftrightarrow35x+56=15x-36\Leftrightarrow20x=-92\)

\(\Rightarrow x=\frac{-23}{5}\)

11 tháng 12 2017

\(a.\)

\(\left(x^2-25\right):\dfrac{2x+10}{3x-7}\)

\(=\left(x-5\right)\left(x+5\right).\dfrac{3x-7}{2\left(x+5\right)}\)

\(=\dfrac{\left(x-5\right)\left(x+5\right)\left(3x-7\right)}{2\left(x+5\right)}\)

\(=\dfrac{\left(x-5\right)\left(3x-7\right)}{2}\)

\(b.\)

\(\dfrac{x^2+x}{5x^2-10x+5}:\dfrac{3x+3}{5x-5}\)

\(=\dfrac{x\left(x+1\right)}{5\left(x^2-2x+1\right)}.\dfrac{5\left(x-1\right)}{3\left(x+3\right)}\)

\(=\dfrac{x\left(x+1\right)}{5\left(x-1\right)^2}.\dfrac{5\left(x-1\right)}{3\left(x+1\right)}\)

\(=\dfrac{x\left(x+1\right).5\left(x-1\right)}{5\left(x-1\right)^2.3\left(x+1\right)}\)

\(=\dfrac{x}{3\left(x-1\right)}\)

11 tháng 12 2017

\(\dfrac{x^2+x}{5x^2-10x+5}:\dfrac{3x+3}{5x-5}=\dfrac{5x\left(x+1\right)\left(x-1\right)}{15\left(x-1\right)^2\left(x+1\right)}=\dfrac{x}{3\left(x-1\right)}\)\(\left(x^2-25\right):\dfrac{2x+10}{3x-7}=\dfrac{\left(x-5\right)\left(x+5\right)\left(3x-7\right)}{2\left(x+5\right)}=\dfrac{\left(x-5\right)\left(3x-7\right)}{2}\)

21 tháng 4 2017

Giải bài 43 trang 54 Toán 8 Tập 1 | Giải bài tập Toán 8