Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4-8x=x\left(x^3-8\right)=x\left(x-2\right)\left(x^2+2x+4\right)\)
\(x^2-y^2-6x+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x+y-3\right)\left(x-y-3\right)\)
Theo bài ra , ta có :
\(\dfrac{x+5}{25}+1+\dfrac{x+6}{24}+1+\dfrac{x+7}{23}=0\)
\(\Leftrightarrow\dfrac{x+5+25}{25}+\dfrac{x+6+24}{24}+\dfrac{x+7+23}{23}=0\)
\(\Leftrightarrow\dfrac{x+30}{25}+\dfrac{x+30}{24}+\dfrac{x+30}{23}=0\)
\(\Leftrightarrow\left(x+30\right)\left(\dfrac{1}{25}+\dfrac{1}{24}+\dfrac{1}{23}\right)=0\)
Vì \(\dfrac{1}{25}+\dfrac{1}{24}+\dfrac{1}{23}\ne0\)
\(\Leftrightarrow x+30=0\)
\(\Leftrightarrow x=-30\)
Vậy S={-30}
Chúc bạn học tốt =))
Ta có :
\(\dfrac{x+5}{25}+\dfrac{x+6}{24}+\dfrac{x+7}{23}=-3\)
=> \(\left(x+5\right).\dfrac{1}{25}+\left(x+5+1\right).\dfrac{1}{24}+\left(x+5+2\right).\dfrac{1}{23}=-3\)
=>\(\left(x+5\right).\dfrac{1}{25}+\left(x+5\right).\dfrac{1}{24}+\dfrac{1}{24}+\left(x+5\right).\dfrac{1}{23}+2.\dfrac{1}{23}\)= -3
=> (x + 5).\(\left(\dfrac{1}{25}+\dfrac{1}{24}+\dfrac{1}{23}\right)\) + \(\dfrac{1}{24}+\dfrac{2}{23}\) = -3
=> (x + 5). \(\dfrac{1727}{13800}\) + \(\dfrac{71}{552}\) = -3
=> (x + 5). \(\dfrac{1727}{13800}\) = -3 - \(\dfrac{71}{552}\)
=> (x + 5). \(\dfrac{1727}{13800}\) = \(\dfrac{-1727}{552}\)
=> x + 5 = -25
=> x = -25-5
=> x = -30
Vậy x = -30
a) Vì ABCD là hình bình hành ( gt )
⇒ AD // BC
F ∈ BC
⇒ AD // BF
⇒ ∠EDA = ∠EFB ( hai góc so le trong )
Xét △AED và △BEF, có :
∠EDA = ∠EFB ( cmt )
∠AED = ∠FEB ( hai góc đối đỉnh )
⇒ △AED ∼ △BEF (g-g)
b) Vì ABCD là hình bình hành ( gt )
⇒ AB // CD
E ∈ AB
⇒ BE // CD
Xét △FDC, có :
BE // CD ( cmt )
E ∈ DF ; B ∈ DC
⇒ \(\dfrac{FB}{FC}=\dfrac{EB}{DC}\) (Hệ quả của định lí Ta-let)
⇒ \(\dfrac{BF}{BE}=\dfrac{FC}{DC}\) (1)
Vì △AED ∼ △BEF ( cmt )
⇒ \(\dfrac{AE}{BE}=\dfrac{AD}{BF}\) (TSDD)
⇒ \(\dfrac{AE}{AD}=\dfrac{BE}{BF}\) (2)
Từ (1) và (2) ⇒ \(\dfrac{AE}{AD}=\dfrac{CF}{CD}\)
⇒ AD.CD = AE.CF
c) Xét △DGC, có :
AE // DC ( cmt )
G ∈ AC ; G ∈ DE
⇒ \(\dfrac{DG}{DE}=\dfrac{GC}{AC}\) (Hệ quả của định lí Ta-let) (3)
Xét △FGC, có :
AD // CF ( cmt )
G ∈ AC ; G ∈ DF
⇒ \(\dfrac{DG}{DF}=\dfrac{AG}{AC}\) (Hệ quả của định lí Ta-let) (4)
Từ (3) và (4) ⇒ \(\dfrac{DG}{DE}+\dfrac{DG}{DF}=\dfrac{GC}{AC}+\dfrac{AG}{AC}\)
⇒ \(\dfrac{DG}{DE}+\dfrac{DG}{DF}\) = 1
⇒ \(\dfrac{1}{DG}\left(\dfrac{DG}{DE}+\dfrac{DG}{DF}\right)=\dfrac{1}{DG}\)
⇒ \(\dfrac{1}{DG}=\dfrac{1}{DE}+\dfrac{1}{DF}\)
a:Xét ΔPBD vuông tại P và ΔMDB vuông tại M có
BD chung
góc PBD=góc MDB
Do đo: ΔPBD=ΔMDB
=>góc HBD=góc HDB
=>HB=HD
Xét tứ giác BHDK có
BH//DK
BK//DH
HB=HD
Do đó: BHDK là hình thoi
b: BHDK là hình thoi
nên HK là trung trực của BD(1)
ABCD là hình thoi
mà AC cắt BD tại O
nên O là trung điểm của BD(2), AC là trung trực của BD(3)
Từ (1), (2), (3) suy ra O,H,K,A,C thẳng hàng
x11+x4+1
= x11+x10+x9-x10-x9-x8+x8+x7+x6-x7-x6-x5+x5+x4+x3-x3-x2-x+x2+x+1
= x9(x2+x+1)-x8(x2+x+1)+x6(x2+x+1)-x5(x2+x+1)+x3(x2+x+1)-x(x2+x+1)+(x2+x+1)
= (x2+x+1)(x9-x8+x6-x5+x3-x+1)