Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: B > 1
=> B = \(\frac{2^{10}-1}{2^{10}-3}>\frac{2^{10}-1+2}{2^{10}-3+2}=\frac{2^{10}+1}{2^{10}-1}=A\)
Vậy A < B
\(\frac{2^{10}+1}{2^{10}-1}=\frac{2^{10}-1+2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)
\(\frac{2^{10}-1}{2^{10}-3}=\frac{2^{10}-3+2}{2^{10}-3}=1+\frac{2}{2^{10}-3}\)
Nhận thấy: \(\frac{2}{2^{10}-3}>\frac{2}{2^{10}-1}\) do 210-3 < 210-1
Vậy: \(\frac{2^{10}-1}{2^{10}-3}>\frac{2^{10}+1}{2^{10}-1}\)
456 x 128 / 451 x 128 =58368/57728
123 x 451 / 128 x 451 = 55473/57728
so sánh : 58368/57728 ...>.... 55473/ 57728
vậy suy ra : 456/451 ....>.... 123/128
tk mk nha mk nhanh nhất
\(\frac{456}{451}\) > \(\frac{123}{128}\)tích cho mik nhé
b) \(\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot...\cdot\frac{100^2}{100\cdot101}=\frac{\left(1\cdot2\cdot3\cdot...\cdot100\right)}{1\cdot2\cdot3\cdot4\cdot...\cdot100}\cdot\frac{\left(1\cdot2\cdot3\cdot...\cdot100\right)}{2\cdot3\cdot4\cdot...\cdot101}=1\cdot\frac{1}{101}=\frac{1}{101}\)
a không biết
B = \(\frac{3}{3.6}+\frac{3}{6.9}+...+\frac{3}{53.56}\)
B = \(\frac{6-3}{3.6}+\frac{9-6}{6.9}+...+\frac{56-53}{53.56}\)
B = \(\frac{6}{3.6}-\frac{3}{3.6}+...+\frac{56}{53.56}-\frac{53}{53.56}\)
B = \(\frac{1}{3}-\frac{1}{6}+...+\frac{1}{53}-\frac{1}{56}\)
B = \(\frac{1}{3}-\frac{1}{56}\)
B = \(\frac{53}{168}\)
Ta có:
\(B=\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.11}+...+\frac{3}{53.56}\)
\(=\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{53}-\frac{1}{56}\)
\(=\frac{1}{3}-\frac{1}{56}=\frac{53}{168}\)
Vậy B=\(\frac{53}{168}\)
Ta thấy \(10^{50}>10^{50}-3\)
\(\Rightarrow B=\frac{10^{50}}{10^{50}-3}>\frac{10^{50}+2}{10^{50}-3+2}=\frac{10^{50}+2}{10^{50}-1}=A\)
Vậy \(A< B\)
\(\frac{-2}{5}.\left(\frac{5}{17}-\frac{9}{15}\right)-\frac{-2}{5}.\left(\frac{2}{17}+\frac{-2}{5}\right)\)
\(=\frac{-2}{5}.\frac{5}{17}-\frac{-2}{5}.\frac{3}{5}-\frac{-2}{5}.\frac{2}{17}-\frac{-2}{5}.\frac{-2}{5}\)
\(=\frac{-2}{5}.\left(\frac{5}{17}-\frac{2}{17}\right)-\frac{-2}{5}.\left(\frac{3}{5}+\frac{-2}{5}\right)\)
\(=\frac{-2}{5}.\frac{3}{17}-\frac{-2}{5}.\frac{1}{5}\)
\(=\frac{-2}{5}.\left(\frac{3}{17}-\frac{1}{5}\right)\)
\(=\frac{-2}{5}.\frac{-2}{85}\)
\(=\frac{4}{425}\)
\(\frac{-2}{5}.\left(\frac{5}{17}-\frac{9}{15}\right)-\frac{-2}{5}.\left(\frac{2}{17}+\frac{-2}{5}\right)\)
= \(\frac{-2}{5}.\frac{-26}{85}-\frac{-2}{5}.\frac{-24}{85}\)
= \(\frac{-2}{5}.\left(\frac{-26}{85}-\frac{-24}{85}\right)\)
= \(\frac{-2}{5}.\frac{-2}{85}\)
= \(\frac{4}{425}\)
\(A=\frac{10^{50}+2}{10^{50}+1}=\frac{2}{1}=2\)
\(B=\frac{10^{50}}{10^{50}-3}=\frac{-1}{3}\)
\(\Rightarrow A>B\)
218-3 21o-3
220-3 lớn hơn 222-3