Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{4157-19}{12471-57}\)\(=\frac{4138}{12414}\)\(=\frac{4138:4138}{12414:4138}\)\(=\frac{1}{3}\)
\(B=\frac{7}{10^2+8.10^2}\)\(=\frac{7}{100+8.100}\)\(=\frac{7}{100+800}\)\(=\frac{7}{900}\)
\(C=\frac{31995}{42660-108}\)\(=\frac{31995}{42552}\)\(=\frac{31995:27}{42552:27}\)\(=\frac{1185}{1576}\)
\(D=\frac{2^{45}.5^3.2^6.3}{8.2^{18}.81.5}=\frac{2^{51}.5^3.3}{2^3.2^{18}.3^4.5}=\frac{2^{51}.5^3.3}{2^{21}.3^4.5}=\frac{2^{30}.5^2}{3^3}\)
k mình nhé.
A=4138/12414=1/3
B=7/900
C=31995/42552=1185/1576
Phần D tui chịu, ahihi
A = \(\frac{3^4\left(5.79-1\right)}{2^2.3^2\left(5.79-1\right)}=\frac{9}{4}\); B = \(\frac{3.7.13.37\left(5.11-1\right)}{4.3.7.13.37\left(3.5-1\right)}=\frac{54}{4.14}=\frac{2.9}{4.2.7}=\frac{9}{28}\)
a: \(=\left(-\dfrac{25}{140}+\dfrac{245}{140}+\dfrac{32}{140}\right)\cdot\dfrac{-69}{20}\)
\(=\dfrac{252}{140}\cdot\dfrac{-69}{20}\)
\(=\dfrac{9}{5}\cdot\dfrac{-69}{20}=\dfrac{-621}{100}\)
b: \(=\left(6-2-\dfrac{4}{5}\right)\cdot\dfrac{25}{8}-\dfrac{8}{5}\cdot4\)
\(=\dfrac{16}{5}\cdot\dfrac{25}{8}-\dfrac{32}{5}=\dfrac{18}{5}\)
c: \(=\left(\dfrac{2}{24}+\dfrac{18}{24}+\dfrac{14}{24}\right):\dfrac{-17}{8}\)
\(=\dfrac{34}{24}\cdot\dfrac{-8}{17}=\dfrac{-1}{3}\cdot2=-\dfrac{2}{3}\)
a, \(\frac{24.315+3.561.8+4.124.6}{1+3+5+7+...+97+99-500}\) (1)
Đặt : S = 1 + 3 + 5 + 7 + ... + 97 + 99
SSH của S là : (99 -1) : 2 + 1 = 50(sh)
Tổng của S là : \(\frac{\left(99+1\right).50}{2}=\frac{100.50}{2}=\frac{5000}{2}=2500\)
Thay S vào biểu thức (1) Ta có :
\(\frac{24.315+3.561.8+4.124.6}{2500-500}\)
\(=\frac{3.8.315+3.561.8+4.2.124.3}{2000}\)
\(=\frac{3.8.315+3.561.8+8.124.3}{2000}\)
\(=\frac{\left(3.8\right).\left(315+561+124\right)}{2000}=\frac{24.1000}{2000}=\frac{24000}{2000}=12\)
b, \(\frac{3^9.3^{20}.2^8}{3^{24}.243.2^6}=\frac{3^{29}.2^8}{3^{24}.3^5.2^6}=\frac{3^{29}.2^6.2^2}{3^{29}.2^6}=2^2=4\)
\(a.\frac{108}{119}.\frac{107}{211}+\frac{108}{119}.\frac{104}{211}=\frac{108}{119}.\left(\frac{107}{211}+\frac{104}{211}\right)=\frac{108}{119}.1=108\)