K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2018

Giải:

\(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow A=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow A=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow A=\left(2^{32}-1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow A=2^{64}-1\)

Vậy ...

9 tháng 12 2018

Đặt \(A=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

Ta có:

  \(3=2^2-1\)

Do đó:

\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^{16}+1\right)\)

Liên tiếp áp dụng hằng đẳng thức \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)ta được:

\(A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1\)

9 tháng 12 2018

=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)

=(2^4-1)(2^4+1)(2^8+1)(2^16+1)

=(2^8-1)(2^8+1)(2^16+1)

=(2^16-1)(2^16+1)

=2^32

                                                           kb và k cho mk nhé!!!!!!!!!!    ^_^ ^_^

21 tháng 9 2017

men có phải mem đâu

21 tháng 9 2017

rùi trời giúp mik đii MEN ~~~

14 tháng 8 2020

a) \(x\left(xy+1\right)+y\left(xy-1\right)-xy\left(x+y\right)\)

\(=X^2y+x+xy^2-y-x^2y-xy^2\)

\(=x-y\)

14 tháng 8 2020

a, \(x\left(xy+1\right)+y\left(xy-1\right)-xy\left(x+y\right)\)

\(=x^2y+x+xy^2-y-x^2y-xy^2\)

\(=x-y\)

b, \(-x\left(x^2+x+1\right)+\frac{1}{2}x^2\left(2x-4\right)+x\left(x+1\right)-2\)

\(=-x^3-x^2-x+x^3-2x^2+x^2+x-2\)

\(=-2x^2-2\)