Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+y-z\right)^2+2.\left(x+y-z\right).\left(z-y\right)+\left(y-z\right)^2=\left[\left(x+y-z\right)+\left(z-y\right)\right]^2=x^2\)
Sai đề.
(x + y + z)2 – 2.(x + y + z).(x + y) + (x + y)2
= [(x + y + z) – (x + y)]2 (Áp dụng HĐT (2) với A = x + y + z ; B = x + y)
= z2.
Ta có: \(\frac{x^2-yz}{\left(x+y\right)\left(x+z\right)}=\frac{x^2+xy-xy-yz}{\left(x+y\right)\left(x+z\right)}\)
\(=\frac{x\left(x+y\right)-y\left(x+z\right)}{\left(x+y\right)\left(x+z\right)}\)
\(=\frac{x}{x+z}-\frac{y}{x+y}\)
Tương tự: \(\frac{y^2-xz}{\left(x+y\right)\left(y+z\right)}=\frac{y}{y+z}-\frac{y}{x+y}\)
\(\frac{z^2-xz}{\left(x+z\right)\left(y+z\right)}=\frac{z}{y+z}-\frac{x}{x+z}\)
Do đó: \(A=\frac{x}{x+z}-\frac{y}{x+y}+\frac{y}{y+z}-\frac{x}{x+y}+\frac{z}{y+z}-\frac{x}{x+z}=0\)
Dùng hằng đẳng thức thứ 2:
A= [(x+y+z)-(x+y)]2=z2
Chúc bạn học tốt!
Áp dụng HĐT thứ 2: (A - B)2 = A2 - 2AB + B2, ta có:
(x + y + z)2 - 2(x + y + z)(x + y) + (x + y)2 = [(x + y + z) - (x + y)]2
= z2
a) \(=x^2+2xy+y^2+x^2-2xy+y^2=2\left(x^2+y^2\right)\)
b) \(=2\left(x^2-y^2\right)+2\left(x^2+y^2\right)=2x^2+2x^2+2y^2-2y^2=4x^2\)( cái này áp dụng luôn kết quả câu trên nha)
c) \(\left(x-y+z\right)^2++2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2=\left(x-y+z+y-z\right)^2=x^2\)
tớ cũng giống Nguyễn Thị Bích Hậu
tích cho nha 1 cái thôi cũng được .