Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a) Ta có: \(x^2-2y^2=xy\) \(\Leftrightarrow\) \(x^2-xy-2y^2=0\)
\(\Leftrightarrow\) \(x^2+xy-2xy-2y^2=0\)
\(\Leftrightarrow\) \(x\left(x+y\right)-2y\left(x+y\right)=0\)
\(\Leftrightarrow\) \(\left(x+y\right)\left(x-2y\right)=0\)
Vì \(\left(x+y\right)\ne0\) nên \(x-2y=0\) hay \(x=2y\). Thay \(x=2y\) vào A, ta được:
\(A=\dfrac{\left(2y\right)^2-y^2}{\left(2y\right)^2+y^2}=\dfrac{4y^2-y^2}{4y^2+y^2}=\dfrac{3y^2}{5y^2}=\dfrac{3}{5}\)
a) \(\left(6x^3y^2-4x^2y^3-10x^2y^2\right):2xy\)
=\(\left(6x^3y^2:2xy\right)-\left(4x^2y^3:2xy\right)-\left(10x^2y^2:2xy\right)\)
\(=3x^2y-2xy^2-5xy\)
b) \(\dfrac{2y}{x-2}+\dfrac{5y}{x-2}\)
=\(\dfrac{2y+5y}{x-2}\)
=\(\dfrac{7y}{x-2}\)
c)\(\dfrac{xy}{3x-y}+\dfrac{3x^2}{y-3x}\)
\(=\dfrac{xy}{3x-y}-\dfrac{3x^2}{3x-y}\)
=\(\dfrac{x\left(y-3x\right)}{3x-y}\)
=\(\dfrac{-x\left(3x-y\right)}{3x-y}\)
=-x
d)\(\dfrac{x-1}{6x+12}.\dfrac{x+2}{x-1}\)
=\(\dfrac{\left(x-1\right)\left(x+2\right)}{6\left(x+2\right)\left(x-1\right)}\)
=\(\dfrac{1}{6}\)
a) \(5x^2y^4:10x^2y=\dfrac{5x^2y^4}{10x^2y}=\dfrac{5.x^2.y.y^3}{5.2.x^2.y}=\dfrac{y^3}{2}\)
Các câu khác tương tự mà làm
b) \(\dfrac{3}{4}x^3y^3:\left(-\dfrac{1}{2}x^2y^2\right)=\left[\dfrac{3}{4}:\left(-\dfrac{1}{2}\right)\right].\left(x^3:x^2\right).\left(y^3:y^2\right)\)
\(=-\dfrac{3}{2}xy\)
c)\(\left(-xy\right)^{10}:\left(-xy\right)^5=\left(-xy\right)^{10-5}=\left(-xy\right)^5\)
1, Ta có: \(x+y=9\Rightarrow\left(x+y\right)^2=81\)
\(\Rightarrow x^2+2xy+y^2=81\)
\(\Rightarrow x^2+y^2=45\)
\(\Rightarrow x^2+y^2-2xy=9\)
\(\Rightarrow\left(x-y\right)^2=9\Rightarrow\left[{}\begin{matrix}x-y=3\\x-y=-3\end{matrix}\right.\)
\(A=x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(\Rightarrow\left[{}\begin{matrix}A=3.63=189\\A=-3.63=-189\end{matrix}\right.\)
Vậy...
\(a,\left(4x^3-3xy^2+2xy\right).\left(-\dfrac{1}{3}x^2y\right)\)
\(=\dfrac{-x}{3y}+\dfrac{y}{x}-\dfrac{2}{3x}\)
\(b,\left(5xy-x^2+y\right)\left(\dfrac{2}{5}xy^2\right)\)
\(=\dfrac{2}{y}-\dfrac{2x}{5y^2}+\dfrac{2}{5xy}\)
c,=\(\dfrac{-4}{3}x^5y+x^3y^3-\dfrac{2}{3}x^3y^2\) b,=\(2x^2y^3-\dfrac{2}{5}x^3y^2+\dfrac{2}{5}xy^3\)
a) ĐKXĐ : \(x+y\ne0\)
\(x^2-2y^2=xy\)
\(x^2-y^2-y^2-xy=0\)
\(\left(x-y\right)\left(x+y\right)-y\left(y+x\right)=0\)
\(\left(x+y\right)\left(x-2y\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y=0\left(Loai\right)\\x-2y=0\left(Chon\right)\end{matrix}\right.\)
Với x - 2y = 0 ta có x = 2y
Thay x = 2y vào A ta có :
\(A=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)
Mk xin lỗi nha, câu c sai đề
c) (x+6)4 + (x+8)4 = 272
\(\left(\dfrac{1}{3}x+2y\right).\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)=\left(\dfrac{1}{3}x+2y\right).[\left(\dfrac{1}{3}x\right)^2-\dfrac{2}{3}xy+\left(2y\right)^2] \)
= \(\left(\dfrac{1}{3}x+2y\right)^3\)