Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a) \(\Leftrightarrow\) 3x+10-2x =0
\(\Leftrightarrow\text{ 3x-2x=-10}\)
\(\Leftrightarrow x=-10\)
b) coi lại có thiếu ngoặc ko nhé
cứ nhân vào dấu ngoặc rồi làm như thường
\(a,3x+2\left(5-x\right)=0\)
\(\Rightarrow3x+10-2x=0\)
\(\Rightarrow x+10=0\)
\(\Rightarrow x=-10\)
\(b,x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5\)
\(\Rightarrow\left(2x^2-x\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5\)
\(\Rightarrow2x^3+9x^2-5x-2x^3-9x^2-4,5=3,5\)
\(\Rightarrow-5x-4,5=3,5\)
\(\Rightarrow-5x=8\)
\(\Rightarrow x=-\dfrac{8}{5}\)
\(c,3x^2-3x\left(x-2\right)=36\)
\(\Rightarrow3x^2-3x^2+6x=36\)
\(\Rightarrow6x=36\)
\(\Rightarrow x=6\)
\(d,\left(3x^2-x+1\right)\left(x-1\right)=x^2\left(4-3x\right)=\dfrac{5}{2}\)
\(\Rightarrow3x^3-3x^2-x^2+x+x-1+4x^2-3x^3=\dfrac{5}{2}\)
\(\Rightarrow2x-1=\dfrac{5}{2}\)
\(\Rightarrow2x=\dfrac{7}{2}\)
\(\Rightarrow x=\dfrac{7}{4}\)
a) 3x + 2( 5 - x) = 0
3x + 10 - 2x = 0
x + 10 = 0
x = -10.
b) x(2x - 1)(x + 5) - ( 2x2 + 1)(x + 4,5) = 3,5
* x(2x2 +10x-x-5) - (2x3 + 9x2 + x + 4,5)=3,5.
2x3 + 10x2 - x2 -5x- 2x3 - 9x2 -x -4,5=3,5
-6x - 4,5 =3,5
-6x = 8
x = -8/6.
Bài 1:
a) \(x^2+9y^2-y^4-6xy\)
\(=\left(x^2-6xy+9y^2\right)-y^4\)
\(=\left[x^2-2.x.3y+\left(3y\right)^2\right]-\left(y^2\right)^2\)
\(=\left(x-3y\right)^2-\left(y^2\right)^2\)
\(=\left(x-3y-y^2\right)\left(x-3y+y^2\right)\)
b) \(2x^2-x-28\)
\(=2x^2-8x+7x-28\)
\(=2x\left(x-4\right)+7\left(x-4\right)\)
\(=\left(x-4\right)\left(2x+7\right)\)
Bài 2:
a) \(2x\left(x^2-2x+3\right)-2x^3\)
\(=2x\left(x^2-2x+3-x^2\right)\)
\(=2x\left(3-2x\right)\)
b) \(2x\left(x-3\right)-\left(x+5\right)\left(2x-1\right)\)
\(=\left(2x^2-6x\right)-\left(2x^2+9x-5\right)\)
\(=2x^2-6x-2x^2-9x+5\)
\(=-15x+5\)
\(=-5\left(3x-1\right)\)
c) \(\left(5-x\right)^2+\left(x+5\right)^2-\left(2x+10\right)\left(x-5\right)\)
\(=\left(x-5\right)^2-2\left(x+5\right)\left(x-5\right)+\left(x+5\right)^2\)
\(=\left[\left(x-5\right)-\left(x+5\right)\right]^2\)
\(=\left(x-5-x-5\right)^2\)
\(=\left(-10\right)^2=100\)
Bài 3:
a) \(x-2=\left(x-2\right)^2\)
\(\Rightarrow\left(x-2\right)-\left(x-2\right)^2=0\)
\(\Rightarrow\left(x-2\right)\left(1-x+2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(3-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\3-x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
b) \(\left(-3x+9\right)x^2-7x+21=0\)
\(\Rightarrow-3\left(x-3\right)x^2-7\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(-3x^2-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\-3x^2-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-\dfrac{7}{3}\end{matrix}\right.\)
Mà x2 > 0 hoặc x2 = 0 với mọi x
=> x2 = -7/3 không thỏa mãn
=> x= 3
Phân tích đa thức
a, x^2+9y^2-y^4-6xy
=(x^2-6xy+9y^2)-y^4
=(x-3y)^2-y^4
=(x-3y-y^2)(x-3y+y^2)
b, 2x^2-x-28
=(2x^2-8x)+(7x-28)
=2x(x-4)+7(x-4)
=(x-4)(2x+7)
Rút gọn
a,2x(x^2-2x+3)-2x^3
=2x(x^2-2x+3-x^2)
=2x(-2x+3)
b,2x(x-3)-(x+5)(2x-1)
=2x^2-6x-2x^2-9x+5
=-15x+5
=-5(3x-1)
c,(5-x)^2+(x+5)^2-(2x+10)(x-5)
Ta có:(5-x)^2=(x-5)^2
=(x-5)^2-2(x+5)(x-5)+(x+5)^2
=(x-5-x-5)^2
=100
Tìm x
a,x-2=(x-2)^2=0
=>x-2=0=>x=2
b,(-3x+9)x^2-7x+21=0
=>-3(x-3)x^2-7(x-3)=0
=>(x-3)(-3x^2-7)=0
=>\(\left[{}\begin{matrix}x-3=0=>x=3\\-3x^2-7=0=>x=\sqrt{\dfrac{-7}{3}}\end{matrix}\right.\)
a)
pt <=> \(x^2+4x+4+x^2-6x+9=2x^2+14x\)
<=> \(2x^2-2x+13=2x^2+14x\)
<=> \(16x=13\)
<=> \(x=\frac{13}{16}\)
b)
pt <=> \(x^3+3x^2+3x+1+x^3-3x^2+3x-1=2x^3\)
<=> \(2x^3+6x=2x^3\)
<=> \(6x=0\)
<=> \(x=0\)
c)
pt <=> \(\left(x^3-3x^2+3x-1\right)-125=0\)
<=> \(\left(x-1\right)^3=125\)
<=> \(x-1=5\)
<=> \(x=6\)
d)
pt <=> \(\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)
<=> \(\left(x-1\right)^2+\left(y+2\right)^2=0\) (1)
CÓ: \(\left(x-1\right)^2;\left(y+2\right)^2\ge0\forall x;y\)
=> \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\) (2)
TỪ (1) VÀ (2) => DÁU "=" XẢY RA <=> \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
e)
pt <=> \(2x^2+8x+8+y^2-2y+1=0\)
<=> \(2\left(x+2\right)^2+\left(y-1\right)^2=0\)
TA LUÔN CÓ: \(2\left(x+2\right)^2+\left(y-1\right)^2\ge0\forall x;y\)
=> DẤU "=" XẢY RA <=> \(\hept{\begin{cases}2\left(x+2\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-2\\y=1\end{cases}}\)
a) ( x + 2 )2 + ( x - 3 )2 = 2x( x + 7 )
<=> x2 + 4x + 4 + x2 - 6x + 9 = 2x2 + 14x
<=> x2 + 4x + x2 - 6x - 2x2 - 14x = -4 - 9
<=> -16x = -13
<=> x = 13/16
b) ( x + 1 )3 + ( x - 1 )3 = 2x3
<=> x3 + 3x2 + 3x + 1 + x3 - 3x2 + 3x - 1 = 2x3
<=> x3 + 3x2 + 3x + x3 - 3x2 + 3x - 2x3 = -1 + 1
<=> 6x = 0
<=> x = 0
c) x3 - 3x2 + 3x - 126 = 0
<=> ( x3 - 3x2 + 3x - 1 ) - 125 = 0
<=> ( x - 1 )3 = 125
<=> ( x - 1 )3 = 53
<=> x - 1 = 5
<=> x = 6
d) x2 + y2 - 2x + 4y + 5 = 0
<=> ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) = 0
<=> ( x - 1 )2 + ( y + 2 )2 = 0 (*)
\(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
e) 2x2 + 8x + y2 - 2y + 9 = 0
<=> 2( x2 + 4x + 4 ) + ( y2 - 2y + 1 ) = 0
<=> 2( x + 2 )2 + ( y - 1 )2 = 0 (*)
\(\hept{\begin{cases}2\left(x+2\right)^2\ge0\forall x\\\left(y-1\right)^2\ge0\forall y\end{cases}}\Rightarrow2\left(x+2\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra ( tức xảy ra (*) ) <=> \(\hept{\begin{cases}x+2=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)
Mấy câu trên dễ
\(M=4a^2-6a+12\)
\(M=\left(2a\right)^2-2\cdot2a\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2+\frac{39}{4}\)
\(M=\left(2a-\frac{3}{2}\right)^2+\frac{39}{4}\ge\frac{39}{4}\forall x\left(đpcm\right)\)
1. a) 2x2y - 3xy2 - 6x + 9y = 2x( xy - 3 ) - 3y ( xy - 3) = ( 2x - 3y)(xy - 3)
b) x2 - 2x + 8 = x2 - 2x + 12 - 1 + 9 = ( x - 1 )2 + 32 ( xem lại đề bài )
2. a) ( 2x - 1) 2 - (2x-1)(2x+3) = 5
(2x-1)(2x-1-2x-3) = 5
-4(2x-1) = 5
2x - 1 = -1,25
2x = -0,25
x= -0,125
b) x(x-9 ) = 0
x= 0 hoặc x = 9
c, ko hiểu
3, M = (2a)2 - 2.2a.1,5 + ( 1,5)2 + 9,75
M= ( 2a - 1,5)2 + 9,75
Vì ( 2a - 1,5 )2 \(\ge\)0 \(\forall x\)
\(\Rightarrow\)( 2a - 1,5)2 + 9,75 \(\ge9,75\forall x\)
Vậy biểu thức trên luôn dương
a) \(x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5\)
\(\Leftrightarrow2x^3-x^2+10x^2-5x-2x^3-x-9x^2-4,5=3,5\)
\(\Leftrightarrow-6x=8\Leftrightarrow x=-\frac{4}{3}\)
b) \(\left(2x-5\right)^2+\left(y-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-5=0\\y-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=3\end{cases}}}\)
a) x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5x(2x−1)(x+5)−(2x2+1)(x+4,5)=3,5
\Leftrightarrow2x^3-x^2+10x^2-5x-2x^3-x-9x^2-4,5=3,5⇔2x3−x2+10x2−5x−2x3−x−9x2−4,5=3,5
\Leftrightarrow-6x=8\Leftrightarrow x=-\frac{4}{3}⇔−6x=8⇔x=−34
b) \left(2x-5\right)^2+\left(y-3\right)^2=0(2x−5)2+(y−3)2=0
\(\Leftrightarrow\hept{\begin{cases}2x-5=0\\y-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=3\end{cases}}}\)