Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(y+2\right)x^{2017}-y^2-2y-1=0\)
\(\Leftrightarrow x^{2017}=\frac{y^2+2y+1}{y+2}\)
\(\Leftrightarrow x^{2017}=y+\frac{1}{y+2}\)
Để vế phải là số nguyên thì y+2 phải là ước của 1
\(\Leftrightarrow\orbr{\begin{cases}y+2=-1\\y+2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=-3\\y=-1\end{cases}}\)
TH1: \(y=-3\Rightarrow x^{2017}=-4\)
Ta thấy x không phải là số nguyên
TH2: \(y=-1\Rightarrow x^{2017}=0\Rightarrow x=0\)
Vậy phương trình có cặp nghiệm (x,y) nguyên thỏa mãn là (0;-1)
\(2y^2+2xy+x+3y-13=0\)
\(\Leftrightarrow2y\left(y+x\right)+x+y+2y=13\)
\(\Leftrightarrow\left(x+y\right)\left(2y+1\right)+2y+1=14\)
\(\Leftrightarrow\left(2y+1\right)\left(x+y+1\right)=14\)
Rồi bạn làm từng cặp ra nhé!