Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2\left(3x-5x^3\right)+10x^5-5x^3\)
\(=\left(6x^3-10x^5\right)+10x^5-5x^3\)
\(=6x^3-10x^5+10x^5-5x^3\)
\(=\left(6x^3-5x^3\right)-\left(10^5-10^5\right)\)
\(=x^3\)
\(\left(x+2\right)\left(x^2-2x+4\right)+\left(x-4\right)\left(x+2\right)\)
\(=\left(x+2\right)\left[\left(x^2-2x+4\right)\right]+\left(x-4\right)\)
\(=\left(x+2\right)\left(x^2-2x+4+x-4\right)\)
\(=\left(x+2\right)\left[\left(x-2x\right)+\left(4-4\right)+x^2\right]\)
\(=\left(x+2\right)\left(-1+x\right)\)
\(=-x+x^2+\left(-2\right)+2x\)
\(=x+x^2+\left(-2\right)\)
- x3-5x2 +8x-4=x3-x2-4x2+4x+4x-4=x2(x-1)-4x(x-1)+4(x-1)=(x-1)(x2-4x+4)+(x-1)(x-2)2 +> x=1:2
- x2.(x3-x2+x-1)
- x.( x3-3x2-1)+3
- x.(x2-xy-y2)
Tìm x:
x3-16x = 0
=> x.(x2-16) = 0
=> x = 0 hay x2-16 = 0
=> x = 0 hay x2 = 0+16
=> x = 0 hay x2 = 16
=> x = 0 hay x = 4 hay x = -4
a) x^2 - 11x + 18 = 0
=> x^2 - 2x - 9x + 18 = 0
=> x ( x- 2 ) - 9 ( x- 2 ) = 0
=> ( x- 9 )( x- 2 )= 0
=> x- 9 = 0 hoặc x - 2 = 0
=> x= 9 hoặc x = 2
3x^2-2x+1 3x^4-8x^3-10x^2+8x-5 x^2-2x-16/3 3x^4-2x^3+x^2 -6x^3-12x^2+8x-5 -6x^3+4x^2-2x -16x^2+10x-5 -16x^2+32/3x-16/3 -2/3x+1/3
Vậy
- (3x4-8x3-10x2+8x-5):(3x2-2x+1) = \(x^2-2x-\frac{16}{3}\)dư \(\frac{-2}{3}x+\frac{1}{3}\)
x^2-1 x^4-2x^3+2x-1 x^2-2x+1 x^4-x^2 -2x^3+x^2+2x-1 -2x^3+2x x^2-1 x^2-1 0
a)\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=0\)
\(\Leftrightarrow\left(x^3+2^3\right)-x^3-2x=0\)
\(\Leftrightarrow8-2x=0\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\)
b)\(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x^2-4\right)=2\)
\(x^3-3x^2+3x-1-x^3-27+3x^2-12=2\)
\(x^3-3x^2+3x-1-x^3-27+3x^2-12-2=0\)
\(3x-42=0\)
\(3x=42\)
\(x=14\)
Câu 1 :
\(2x^2\left(3x-5x^3\right)+10x^5-5x^3\)
\(=6x^3-10x^5+10x^5-5x^3\)
\(=x^3\)
Câu 2 :
\(\left(x+3\right)\left(x^2-3x+9\right)+\left(x-9\right)\left(x+3\right)\)
\(=x^3+3^3+\left(x^2+3x-9x-27\right)\)
\(=x^3+27+x^2-6x-27\)
\(=x^3+x^2-6x\)