Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( ghi lại đề )
Ta có :
\(\frac{1}{4}z=\frac{2^{100}+1}{2^{100}+4}=\frac{2^{100}+4-3}{2^{100}+4}=\frac{2^{100}+4}{2^{100}+4}-\frac{3}{2^{100}+4}=1-\frac{3}{2^{100}+4}\)
\(\frac{1}{4}t=\frac{2^{102}+1}{2^{102}+4}=\frac{2^{102}+4-3}{2^{102}+4}=\frac{2^{102}+4}{2^{102}+4}-\frac{3}{2^{102}+4}=1-\frac{3}{2^{102}+4}\)
Lại có :
\(\frac{3}{2^{100}+4}>\frac{3}{2^{102}+4}\)
\(\Leftrightarrow\)\(-\frac{3}{2^{100}+4}< -\frac{3}{2^{102}+4}\)
\(\Leftrightarrow\)\(1-\frac{3}{2^{100}+4}< 1-\frac{3}{2^{102}+4}\)
\(\Leftrightarrow\)\(\frac{1}{4}z< \frac{1}{4}t\)
\(\Leftrightarrow\)\(z< t\)
Vậy \(z< t\)
Chúc bạn học tốt ~
ta có: \(T=\frac{2^{102}+1}{2^{100}+1}=\frac{2^2.\left(2^{100}+1\right)-3}{2^{100}+1}=\frac{2^2.\left(2^{100}+1\right)}{2^{100}+1}-\frac{3}{2^{100}+1}\)\(=4-\frac{3}{2^{100}+1}\)
\(Z=\frac{2^{100}+1}{2^{98}+1}=\frac{2^2.\left(2^{98}+1\right)-3}{2^{98}+1}=4-\frac{3}{2^{98}+1}\)
\(\Rightarrow\frac{3}{2^{100}+1}< \frac{3}{2^{98}+1}\)
\(\Rightarrow4-\frac{3}{2^{100}+1}>4-\frac{3}{2^{98}+1}\)
\(\Rightarrow T>Z\)
ta có \(A=\frac{1}{100}+\frac{1}{101}+...+\frac{1}{149}\)
ta thấy \(\frac{1}{100}=\frac{1}{100}\)
\(\frac{1}{101}<\frac{1}{100}\)
\(\frac{1}{102}<\frac{1}{100}\)
................................
\(\frac{1}{149}<\frac{1}{100}\)
\(\Rightarrow A=\frac{1}{100}+\frac{1}{101}+\frac{1}{102}+...+\frac{1}{149}<\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)
\(=\frac{49}{100}<\frac{1}{2}\)
vì \(A<\frac{49}{100}<\frac{1}{2}\Leftrightarrow A<\frac{1}{2}\)
Câu 1 :
Ta có : \(A=\frac{10^{100}+1}{10^{101}+1}\)
\(\Rightarrow10A=\frac{10^{101}+10}{10^{101}+1}=\frac{10^{101}+1+9}{10^{101}+1}=1+\frac{9}{10^{101}+1}\)
Ta có : \(B=\frac{10^{101}+1}{10^{102}+1}\)
\(10B=\frac{10^{102}+10}{10^{102}+1}=\frac{10^{102}+1+9}{10^{102}+1}=1+\frac{9}{10^{102}+1}\)
Vì 10101+1<10102+1
\(\Rightarrow\frac{9}{10^{101}+1}>\frac{9}{10^{102}+1}\)
\(\Rightarrow1+\frac{9}{10^{101}+1}>1+\frac{9}{10^{102}+1}\)
\(\Rightarrow\)10A>10B
\(\Rightarrow\)A>B
Vậy A>B.
Câu 2 :
Ta có : \(E=\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
Vì 2001<2001+2002 và 2002<2001+2002
\(\Rightarrow\hept{\begin{cases}\frac{2000}{2001}>\frac{2000}{2001+2002}\\\frac{2001}{2002}>\frac{2001}{2001+2002}\end{cases}}\)
\(\Rightarrow C>E\)
Vậy C>E.
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)
\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)
\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{98}{99}.\frac{99}{100}\)
\(\Rightarrow A^2>\frac{1}{100}=\frac{1}{10^2}\)
Vậy \(A>\frac{1}{10}\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\)
\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{9998}{9999}\)
\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{9998}{9999}.\frac{9999}{10000}\)
\(\Rightarrow A^2>\frac{1}{10000}=\frac{1}{100^2}\)
\(VayA>\frac{1}{100}=B\)
a)\(A=\frac{31}{23}-\left(\frac{7}{32}+\frac{8}{2}\right)vaB=\left(\frac{1}{3}+\frac{12}{67}+\frac{13}{41}\right)-\left(\frac{79}{67}-\frac{28}{41}\right)\)
+)Ta có:\(A=\frac{31}{23}-\left(\frac{7}{32}+\frac{8}{2}\right)\)
\(\Leftrightarrow A=\frac{31}{23}-\left(\frac{7}{32}+\frac{128}{32}\right)\)
\(\Leftrightarrow A=\frac{31}{23}-\frac{135}{32}\)
\(\Leftrightarrow A=\frac{992}{736}-\frac{3105}{736}\)
\(\Leftrightarrow A=\frac{-2113}{736}\left(1\right)\)
+)Ta lại có:\(B=\left(\frac{1}{3}+\frac{12}{67}+\frac{13}{41}\right)-\left(\frac{79}{67}-\frac{28}{41}\right)\)
\(\Leftrightarrow B=\frac{1}{3}+\frac{12}{67}+\frac{13}{41}-\frac{79}{67}+\frac{28}{41}\)
\(\Leftrightarrow B=\frac{1}{3}+\left(\frac{12}{67}-\frac{79}{67}\right)+\left(\frac{13}{41}+\frac{28}{41}\right)\)
\(\Leftrightarrow B=\frac{1}{3}+\frac{-67}{67}+\frac{41}{41}\)
\(\Leftrightarrow B=\frac{1}{3}+\left(-1\right)+1\)
\(\Leftrightarrow B=\frac{1}{3}\left(2\right)\)
+)Từ (1) và (2)
\(\Leftrightarrow A< 0< B\Leftrightarrow A< B\)
Vậy A<B
b)\(\frac{200420042004}{200520052005}va\frac{2004}{2005}\)
+)Ta có \(\frac{200420042004}{200520052005}=\frac{2004.100010001}{2005.100010001}=\frac{2004}{2005}\)
\(\Leftrightarrow\frac{200420042004}{200520052005}=\frac{2004}{2005}\)
c)\(C=\frac{2020^{2006}+1}{2020^{2007}+1}vaD=\frac{2020^{2005}+1}{2020^{2006}+1}\)
\(C=\frac{2020^{2006}+1}{2020^{2007}+1}< 1\)
\(\Leftrightarrow C< \frac{2020^{2006}+1+2019}{2020^{2007}+1+2019}=\frac{2020^{2006}+2020}{2020^{2007}+2020}=\frac{2020.\left(2020^{2005}+1\right)}{2020.\left(2020^{2006}+1\right)}=\frac{2020^{2005}+1}{2020^{2006}+1}\)
\(\Leftrightarrow C< D\)
Chúc bạn học tốt
1) Ta có: \(\frac{2019}{2020}+\frac{2020}{2021}=\frac{2019}{2020}+\frac{4040}{4042}>\frac{4040}{4042}>\frac{4039}{4041}\)
Mà \(\frac{2019+2020}{2020+2021}=\frac{4039}{4041}\)
\(\Rightarrow\frac{2019}{2020}+\frac{2020}{2021}>\frac{2019+2020}{2020+2021}\)
2) BĐT cần CM tương đương:
\(\frac{a^2+b^2}{ab}\ge2\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (Luôn đúng)
Dấu "=" xảy ra khi: a = b
Hoặc có thể sử dụng BĐT Cauchy nếu bạn học cao hơn
Tìm x e Z biết: 2x+1 e Ư (x+5) và x e N
giải giúp mình nhé!
mình cần gấpppppppppppppp
a) \(B=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{302\cdot305}\)
\(B=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{302\cdot305}\right)\)
\(B=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{302}-\frac{1}{305}\right)\)
\(B=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{305}\right)=\frac{1}{3}\cdot\frac{303}{610}=\frac{101}{610}\)
b) \(C=\frac{6}{1\cdot4}+\frac{6}{4\cdot7}+....+\frac{6}{202\cdot205}\)
\(C=2\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{202\cdot205}\right)=2\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{202}-\frac{1}{205}\right)\)
\(=2\left(1-\frac{1}{205}\right)=2\cdot\frac{204}{205}=\frac{408}{205}\)
c) \(D=\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+...+\frac{5^2}{266\cdot271}\)
\(D=5\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+...+\frac{5}{266\cdot271}\right)\)
\(D=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{266}-\frac{1}{271}\right)=5\left(1-\frac{1}{271}\right)=5\cdot\frac{270}{271}=\frac{1350}{271}\)
d) \(E=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{5}{16}\cdot...\cdot\frac{9999}{10000}=\frac{3\cdot8\cdot15\cdot...\cdot9999}{4\cdot9\cdot16\cdot...\cdot10000}=\frac{3}{10000}\)
e) \(F=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\)
\(F=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{2500}\right)\)
\(F=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{2499}{2500}=\frac{3\cdot8\cdot15\cdot...\cdot2499}{4\cdot9\cdot16\cdot...\cdot2500}=\frac{3}{2500}\)
a. \(B=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{302.305}\)
\(\Rightarrow3B=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{302.305}\)
\(\Rightarrow3B=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{302}-\frac{1}{305}\)
\(\Rightarrow3B=\frac{1}{2}-\frac{1}{305}\)
\(\Rightarrow3B=\frac{303}{610}\)
\(\Rightarrow B=\frac{101}{610}\)
b. \(C=\frac{6}{1.4}+\frac{6}{4.7}+...+\frac{6}{202.205}\)
\(\Rightarrow\frac{1}{2}C=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{202.205}\)
\(\Rightarrow\frac{1}{2}C=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{202}-\frac{1}{205}\)
\(\Rightarrow\frac{1}{2}C=1-\frac{1}{205}\)
\(\Rightarrow\frac{1}{2}C=\frac{204}{205}\)
\(\Rightarrow C=\frac{408}{205}\)
c. \(D=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{266.271}\)
\(\Rightarrow\frac{1}{5}D=\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{266.271}\)
\(\Rightarrow\frac{1}{5}D=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{266}-\frac{1}{271}\)
\(\Rightarrow\frac{1}{5}D=1-\frac{1}{271}\)
\(\Rightarrow\frac{1}{5}D=\frac{270}{271}\)
\(\Rightarrow D=\frac{1350}{271}\)
Ta có : \(N=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1000.1001}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{1001-1000}{1000.1001}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1000}-\frac{1}{1001}\)
\(=1-\frac{1}{1001}=\frac{1000}{1001}\)
Ta thấy : \(1001< 2020\Rightarrow\frac{1}{1001}>\frac{1}{2020}\)
\(\Rightarrow-\frac{1}{1001}< -\frac{1}{2020}\)
\(\Rightarrow1-\frac{1}{1001}< 1-\frac{1}{2020}\Rightarrow\frac{1000}{1001}< \frac{2019}{2020}\)
Hay : \(N< M\)
ta có: 298 < 2100
=> 298+1<2100+1
\(\Rightarrow\frac{2^{102}+1}{2^{98}+1}>\frac{2^{102}+1}{2^{100}+1}\)
nhầm r mn ơi z= \(\frac{2^{100}+1}{2^{98}+1}\)