Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(4x-1\right)^2+\left(x+3\right)^2=16x^2-8x+1+x^2+6x+9\)
\(=17x^2-2x+10\)
\(\left(x-y+1\right)^3=x^3-y^3+1-3x^2y+3xy^2+3x^2+3x+3y^2-3y-6xy\)
\(\left(4x-1\right)^2+\left(x+3\right)^2=16x^2-8x+1+x^2+6x+9\) \(=17x^2-2x+10\)
\(\left(x-y+1\right)^3=\left(x-y\right)^3+3\left(x-y\right)^2+3\left(x-y\right)+1\)
1/ \(\left(2x-1\right)^2-3\left(2x-1\right)^2=0\)
\(\left(2x-1\right)^2\left(1-3\right)=0\)
\(\left(2x-1\right)^2\cdot\left(-2\right)=0\)
\(\Rightarrow\text{ }\left(2x-1\right)^2=0\)
\(2x-1=0\)
\(2x=0+1=1\)
\(x=\frac{1}{2}\)
1) \(\left(2x-1\right)^2-3\left(2x-1\right)^2=0\)
=> \(\left(2x-1\right)^2\left(1-3\right)=0\)
=> \(\left(2x-1\right)^2.\left(-2\right)=0\)
=> \(\left(2x-1\right)^2=0\)
=> \(2x-1=0\)
=> \(2x=1\)
=> \(x=1:2=\frac{1}{2}\)
\(\left(x-y+1\right)^3=\left(x-y\right)^3+3\left(x-y\right)^2+3\left(x-y\right)+1\)
\(=x^3-3x^2y+3xy^2-y^3+3x^2-6xy+3y^2+3x-3y+1\)
Mong là lần này không làm nhầm:v
thì bạn chỉ cần khai triển hằng đẳng thức là được thôi,nếu không biết thì cứ gõ lên mạng
Điều kiện \(\hept{\begin{cases}x\ne0\\3x^2-x-4\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\\x\ne\frac{4}{3}\end{cases}}}\)
Đặt \(\frac{3x^2-x-4}{x}=a\)thì ta có
\(PT\Leftrightarrow a+\frac{9}{a}=6\)
\(\Leftrightarrow a^2-6a+9=0\)
\(\Leftrightarrow\left(a-3\right)^2=0\)
\(\Leftrightarrow a=3\)
\(\Leftrightarrow\frac{3x^2-x-4}{x}=3\)
\(\Leftrightarrow3x^2-4x-4=0\)
\(\Leftrightarrow\left(3x^2-6x\right)+\left(2x-4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{-2}{3}\end{cases}}\)
Bài Làm:
\(1,\left(2x-1\right)^2-3\left(2x-1\right)^2=0\)
\(\Leftrightarrow-2\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy ...
\(2,\left(x-1\right)^2\left(x+1\right)=x+1\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[\left(x-1\right)^2-1\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left[x^2-2x+1-1\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=2\end{matrix}\right.\)
Vậy ...
\(3,x^4-3x^2=x^2\)
\(\Leftrightarrow x^4-3x^2-x^2=0\)
\(\Leftrightarrow x^4-4x^2=0\)
\(\Leftrightarrow x^2\left(x^2-4\right)=0\)
\(\Leftrightarrow x^2\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
Vậy ...
Chúc pạn hok tốt!!!
x(y - z) + 2(z - y)
= x(y - z) - 2(y - z)
= (x - 2)(y - z)
(2x - 3y)(x - 2) - (x + 3)(3y - 2x)
= (2x - 3y)(x - 2) + (x + 2)(2x - 3y)
= (2x - 3y)(x - 2 + x + 2)
= 2x(2x - 3y)