Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3: A=2018-|x+2019|. Vì |x+2019|\(\ge\)0 nên -|x+2019|\(\le\)0=>2018-|x+2019|\(\le\) 2. Vậy A có GTLN = 2 khi x+2019=0 hay x=-2019. B=-10-\(\left|2x-\dfrac{1}{1009}\right|\). Vì \(\left|2x-\dfrac{1}{1009}\right|\ge0\Rightarrow-\left|2x-\dfrac{1}{1009}\right|\le0\Rightarrow-10-\left|2x-\dfrac{1}{1009}\right|\le-10\). Vậy B có GTLN = -10 khi 2x-\(\dfrac{1}{1009}=0\) => \(2x=\dfrac{1}{1009}\Rightarrow x=\dfrac{1}{1009}:2=\dfrac{1}{2018}\)
Bài 2: A=\(\left|5x+1\right|-\dfrac{3}{8}\). Vì \(\left|5x+1\right|\ge0\Rightarrow\left|5x+1\right|-\dfrac{3}{8}\ge\dfrac{-3}{8}\). Vậy A có GTNN = \(\dfrac{-3}{8}\) khi 5x+1= 0=> 5x= -1=> x = \(\dfrac{-1}{5}\). B=\(\left|2-\dfrac{1}{6}x\right|+0,25\) , vì \(\left|2-\dfrac{1}{6}x\right|\ge0\Rightarrow\left|2-\dfrac{1}{6}x\right|+0,25\ge0,25\) . Vậy B có GTNN = 0,25 khi \(2-\dfrac{1}{6}x=0\Rightarrow\dfrac{x}{6}=2\Rightarrow x=2.6=12\)
a) Giải theo cách lớp 8
x^2 -1 +2 =0
x^2 +1 =0
x^2 = -1 (vô lý)
Suy ra vô nghiệm
Lớp 6:
(x-1)(x+1) = -2 = 1x(-2)
Mà 1-(-2)=3
(x+1) - (x-1) =2
Suy ra vô nghiệm
b) (x+1) (3-x)=0
Suy ra x+1 = 0 hay 3-x=0
Suy ra x = -1 hay x=3
c) (2-x)^4 = 3^4 hay 2-x = (-3)^4
suy ra 2-x=3 hay 2 - x = -3
x = -1 hay x = 5
d) x^2 + 1 = 0 hay 81-x^2 = 0
x^2 = -1 ( vô lý) nên
81 - x^2 =0
x^2=81
x = 9 hay x= -9
\(\left(x-1\right)\left(x+1\right)+2=0\Rightarrow x^2-1+2=0\) ( Lớp 6 chưa dùng căn thì vô nghiệm )
\(\Rightarrow x^2-1=-2\Rightarrow x^2=\left(-2\right)+1=-1\Leftrightarrow x=\sqrt{-1}\)
\(\left(x+1\right)\left(3-x\right)=0\). Xét 2 trường hợp : \(x+1=0\) và \(3-x=0\)
Với \(x+1=0\Rightarrow x=0-1=-1\) còn \(3-x=0\Rightarrow x=0+3=3\)
\(\left(2-x\right)^4=81=3^4\Rightarrow2-x=3\Leftrightarrow x=2-3=-1\)
TH2 : Với \(\left(2-x\right)^4=\left(-3\right)^4\Rightarrow2-x=-3\Leftrightarrow x=2-\left(-3\right)=5\)
\(\left(x^2+1\right)\left(81-x^2\right)=0\) . Xét 2 trường hợp \(x^2+1=0\) và \(81-x^2=0\)
Với \(x^2-1=0\Rightarrow x^2=0+1=1\Rightarrow x=\sqrt{1}\) ( Với lớp 6 thì vô nghiệm )
Với \(81-x^2=0\Rightarrow81=0+x^2=x^2=9^2;\left(-9\right)^2\Rightarrow x=9;-9\)
Bài 1:
Vì \((x-1)^2\geq 0, \forall x\in\mathbb{Z}\Rightarrow 2(y-3)^2=3-(x-1)^2\leq 3\)
\(\Rightarrow (y-3)^2\leq \frac{3}{2}\)
Mà \((y-3)^2\geq 0; (y-3)^2\in\mathbb{Z}\) nên \(\left[\begin{matrix} (y-3)^2=0\\ (y-3)^2=1\end{matrix}\right.\)
Nếu \((y-3)^2=0\):
\((x-1)^2=3-2(y-3)^2=3\) (vô lý với $x$ nguyên)
Nếu \((y-3)^2=1\Rightarrow y-3=\pm 1\Rightarrow \left[\begin{matrix} y=4\\ y=2\end{matrix}\right.\)
\((x-1)^2=3-2(y-3)^2=3-2=1\Rightarrow x-1=\pm 1\Rightarrow \left[\begin{matrix} x=0\\ x=2\end{matrix}\right.\)
Vậy \((x,y)=(0,4); (0,2); (2,4); (2,2)\)
Bài 2:
Dễ thấy vế trái của đẳng thức đã cho không âm (tính chất trị tuyệt đối)
\(\Rightarrow 2018x=\text{VT}\geq 0\Rightarrow x\geq 0\)
\(\Rightarrow \left\{\begin{matrix} |x+1|=x+1\\ |x+2|=x+2\\ |x+3|=x+3\\ ....\\ |x+2019|=x+2019\end{matrix}\right.\)
Phương trình trở thành:
\((x+1)+(x+2)+(x+3)+....+(x+2019)=2018x\)
\(\Leftrightarrow 2019x+2029095=2018x\)
\(\Leftrightarrow x=-2029095< 0\) (vô lý- loại)
Vậy không tồn tại $x$ thỏa mãn.
a) Ta có:
\(x-\left\{\left[-x-\left(x+3\right)\right]-\left[\left(x+2018\right)-\left(x+2019\right)\right]+21\right\}\)
\(=x-\left\{\left[-x-x-3\right]-\left[x+2018-x-2019\right]+21\right\}\)
\(=x-\left\{\left[-2x-3\right]-\left[2018-2019\right]+21\right\}\)
\(=x+2x+-3+1-21\)
\(=3x-23\)
=> \(3x-23=2020\)
\(3x=2020+23=2043\)
=> \(x=2043:3=681\)
Nhầm
\(=x-\left\{-2x-3+1+21\right\}\\ =x+2x+3-1-21\)
\(=3x-17\\ =>3x-17=2020\\ 3x=2020+17=2037\\ x=2037:3=679\)
Trả lời
Mk nghĩ bạn có thể tham khảo ở CHTT nha !
Có đáp án của câu b;c và d đó.
Đừng ném đá chọi gạch nha !
a) vi(x^2+5)(x^2-25)=0
=>x^2+5=0 hoac x^2-25=0
=>x=...hoac x=...(tu lam)
b)(x-2)(x+1)=0
=>x-2=0 hoac x+1=0
=>x=2 hoac x=-1
c)(x^2+7)(x^2-49)<0
=>x^2+7va x^2-49 trai dau
ma x^2+7>=7=>x^2-49<0=>x<7 va x>-7
con lai tuong tu
tu lam nhe nho k nha
\(a.\left(x-4\right)\left(x+7\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-4=0\\x+7=0\end{cases}\Rightarrow\hept{\begin{cases}x=4\\x=-7\end{cases}}}\)
\(b.x\left(x+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=-3\end{cases}}}\)
\(c.\left(x-2\right)\left(5-x\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\5-x=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}}\)
\(d.\left(x-1\right)\left(x^2+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\x^2=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\x=-\left(-1\right)or\left(-1\right)\end{cases}}}\)
a) ( x - 4 ) . ( x + 7 ) = 0
một phép nhân có tích bằng 0
=> một trong hai thừa số này bằng 0
+) nếu x - 4 = 0 => x = 0 + 4 = 4
+) nếu x + 7 = 0 => x = 0 - 7 = -7
vậy x = { 4 ; -7 }
b) x . ( x + 3 ) = 0
x + 3 = 0 : x
x + 3 = 0
x = 0 - 3
x = -3
vậy x = -3
c) ( x - 2 ) . ( 5 - x ) = 0
một phép nhân có tích bằng 0
=> một trong hai thừa số này bằng 0
+) nếu x - 2 = 0 => x = 0 + 2 = 2
+) nếu 5 - x = 0 => x = 5 - 0 = 5
vậy x = { 2 ; 5 }
d) ( x - 1 ) . ( x2 + 1 ) = 0
=> x - 1 = 0 hoặc x2 + 1 = 0
+) x - 1 = 0 => x = 0 + 1 = 1
+) x2 + 1 = 0 => x2 = 0 - 1 = -1 => x = -1
vậy x = { 1 ; -1 }
câu 1
A=-1
câu 2
\(\frac{x+1}{2}=\frac{8}{x+1}\)
\(\Rightarrow\left(x+1\right).\left(x+1\right)=8.2\)
\(\left(x+1\right).\left(x+1\right)=16\)
\(\left(x+1\right)^2=16\)
\(\Rightarrow x+1=4\)
vậy x=3
Câu 1 :
Bài giải
Ta có : \(\left|x\right|+\left|x+1\right|=2019\)
\(\Rightarrow\orbr{\begin{cases}x\ge0\text{ }\Leftrightarrow\text{ }\left|x\right|+\left|x+1\right|=x+x+1=2019\\x< 0\text{ }\Leftrightarrow\text{ }\left|x\right|+\left|x+1\right|=-x+\left(-x\right)+1=2019\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}2x+1=2019\\2\left(-x\right)+1=2019\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=2019-1=2018\\2\left(-x\right)=2019-1=2018\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x=2018\text{ : }2=1009\\x=2018\text{ : }\left(-2\right)=-1009\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{1009\text{ ; }-1009\right\}\)
Sai thì thôi ! Thông cảm nha
Câu 2 :
Bài giải
\(\left|x\right|+\left|x+1\right|=0\)
Mà \(\hept{\begin{cases}\left|x\right|\ge0\\\left|x+1\right|\ge0\end{cases}}\)
\(\Rightarrow\) Dấu "=" xảy ra khi \(\left|x+1\right|=0\)
\(\Rightarrow\text{ }x+1=0\)
\(\Rightarrow\text{ }x=0-1=-1\)
Mà \(\left|-1\right|+\left|-1+1\right|\ne0\)
\(\Rightarrow\) Biểu thức sai