K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 13:

1: 

a: \(2x^2+2x=2x\cdot x+2x\cdot1=2x\left(x+1\right)\)

b: \(9x^2-4y^2\)

\(=\left(3x\right)^2-\left(2y\right)^2\)

=(3x-2y)(3x+2y)

2:

\(\dfrac{xy+2x+1}{xy+x+y+1}+\dfrac{yz+2y+1}{yz+y+z+1}+\dfrac{zx+2z+1}{zx+z+x+1}\)

\(=\dfrac{xy+2x+1}{\left(y+1\right)\left(x+1\right)}+\dfrac{yz+2y+1}{\left(z+1\right)\left(y+1\right)}+\dfrac{z\left(x+2\right)+1}{\left(z+1\right)\left(x+1\right)}\)

\(=\dfrac{\left(xy+2x+1\right)\left(z+1\right)+\left(yz+2y+1\right)\left(x+1\right)+\left(xz+2z+1\right)\left(y+1\right)}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)

\(=\dfrac{xyz+xy+2xz+2x+z+1+xyz+yz+2xy+2y+x+1+\left(xz+2z+1\right)\left(y+1\right)}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)

\(=\dfrac{2xyz+3xy+2xz+3x+z+2+yz+2y+x+xyz+xz+2zy+2z+y+1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)

\(=\dfrac{3xyz+3xy+3xz+3yz+3x+3z+3y+3}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)

\(=\dfrac{3\left(xyz+xy+xz+yz+x+z+y+1\right)}{\left(xy+x+y+1\right)\left(z+1\right)}\)

=3

Câu 14:

1:

f(0)=0+5=5

2:
Vì hệ số góc của y=ax+b là -1 nên a=-1

=>y=-x+b

Thay x=1 và y=2 vào y=-x+b, ta được:

b-1=2

=>b=3

 

loading... 

1
NV
16 tháng 1 2024

a.

\(A=\left(\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)

\(=\left(\dfrac{x^2+x+1}{x}+\dfrac{x+2}{x}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)

\(=\left(\dfrac{x^2+3x+1}{x}\right).\dfrac{x}{x+1}\)

\(=\dfrac{x^2+3x+1}{x+1}\)

2.

\(x^3-4x^3+3x=0\Leftrightarrow x\left(x^2-4x+3\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=1\left(loại\right)\\x=3\end{matrix}\right.\)

Với \(x=3\Rightarrow A=\dfrac{3^2+3.3+1}{3+1}=\dfrac{19}{4}\)

30 tháng 1 2024

4.linda sometimes brings her home made after the class

30 tháng 1 2024

Linh 6A3(THCS Mai Đình) à

 

 

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Bài 4:

a. Vì $\triangle ABC\sim \triangle A'B'C'$ nên:

$\frac{AB}{A'B'}=\frac{BC}{B'C'}=\frac{AC}{A'C'}(1)$ và $\widehat{ABC}=\widehat{A'B'C'}$

$\frac{DB}{DC}=\frac{D'B'}{D'C}$

$\Rightarrow \frac{BD}{BC}=\frac{D'B'}{B'C'}$

$\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}(2)$

Từ $(1); (2)\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}=\frac{AB}{A'B'}$

Xét tam giác $ABD$ và $A'B'D'$ có:

$\widehat{ABD}=\widehat{ABC}=\widehat{A'B'C'}=\widehat{A'B'D'}$

$\frac{AB}{A'B'}=\frac{BD}{B'D'}$

$\Rightarrow \triangle ABD\sim \triangle A'B'D'$ (c.g.c)

b.

Từ tam giác đồng dạng phần a và (1) suy ra:
$\frac{AD}{A'D'}=\frac{AB}{A'B'}=\frac{BC}{B'C'}$

$\Rightarrow AD.B'C'=BC.A'D'$

 

AH
Akai Haruma
Giáo viên
3 tháng 2 2024

Hình bài 4:

NV
16 tháng 1 2024

ĐKXĐ: \(\left|x-2\right|-1\ne0\)

\(\Rightarrow\left|x-2\right|\ne1\)

\(\Rightarrow\left\{{}\begin{matrix}x-2\ne1\\x-2\ne-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ne3\\x\ne1\end{matrix}\right.\)