Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B O C D E M H K
a)Ta có: EA \(\perp\)AB (t/c tiếp tuyến) => \(\widehat{OAE}=90^0\)
OD \(\perp\)EC (t/c tiếp tuyến) => \(\widehat{ODE}=90^0\)
Xét t/giác AODE có \(\widehat{OAE}+\widehat{ODE}=90^0+90^0=180^0\)
=> t/giác AODE nt đường tròn (vì tổng 2 góc đối diện = 1800)
b) Xét \(\Delta\)EKD và \(\Delta\)EDB
có: \(\widehat{BED}\):chung
\(\widehat{EDK}=\widehat{EBK}=\frac{1}{2}sđ\widebat{KD}\)
=> \(\Delta\)EKD ∽ \(\Delta\)EDB (g.g)
=> \(\frac{ED}{EB}=\frac{EK}{ED}\)=> ED2 = EK.EB (1)
Ta có: AE = ED (t/c 2 tt cắt nhau) => E thuộc đường trung trực của AD
OA = OD = R => O thuộc đường trung trực của AD
=> EO là đường trung trực của ED => OE \(\perp\)AD
Xét \(\Delta\)EDO vuông tại D có DH là đường cao => ED2 = EK.EB (2)
Từ (1) và (2) => EH.EO = DK.EB => \(\frac{EH}{EB}=\frac{EK}{EO}\)
Xét tam giác EHK và tam giác EBO
có: \(\widehat{OEB}\): chung
\(\frac{EH}{EB}=\frac{EK}{EO}\)(cmt)
=> tam giác EHK ∽ tam giác EBO (c.g.c)
=> \(\widehat{EHK}=\widehat{KBA}\)
c) Ta có: OM // AE (cùng vuông góc với AB) => \(\frac{OM}{AE}=\frac{MC}{EC}\)(hq định lí ta-lét)
=> OM.EC = AE.MC
Ta lại có: \(\frac{EA}{EM}-\frac{MO}{MC}=\frac{EA.MC-MO.EM}{EM.MC}=\frac{MO.EC-MO.EM}{EM.MC}=\frac{OM.MC}{EM.MC}=\frac{OM}{EM}\)
Mặt khác: OM // AE => \(\widehat{MOE}=\widehat{OEA}\)(slt)
mà \(\widehat{AEO}=\widehat{OEM}\)(t/c 2 tt cắt nhau)
=> \(\widehat{MOE}=\widehat{MEO}\) => tam giác OME cân tại M => OM = ME
=> \(\frac{OM}{EM}=1\)
=> \(\frac{EA}{EM}-\frac{OM}{MC}=1\)
A B C O I K E M N G
a) Xét đường tròn (O) bán kính AB có điểm E nằm trên cung AB => ^AEB=900 hay ^MEN=900
Tương tự ^CNB=^AMC=900 => ^EMC=^ENC=900.
Xét tứ giác MENC: ^MEN=^EMC=^ENC=900 => Tứ giác MENC là hình chữ nhật.
=> MN=EC (đpcm).
b) Gọi G là tâm của hình chữ nhật MANC => GN=GC.
Xét \(\Delta\)GCK và \(\Delta\)GNK: GC=GN; GK chung; CK=NK => \(\Delta\)GCK=\(\Delta\)GNK (c.c.c)
=> ^GCK=^GNK. Mà ^GCK=900 => GNK=900 => MN vuông góc NK
=> MN là tiếp tuyến của (K) với N là tiếp điểm.
Tương tự ta cũng c/m được MN là tiếp tuyến của (I) với M là tiếp điểm.
=> MN là tiếp tuyến chung của (I) và (K) (đpcm).
c) Dễ thấy \(\Delta\)ACE ~ \(\Delta\)ECB => \(\frac{AC}{CE}=\frac{CE}{CB}\Rightarrow CE^2=AC.CB\)
Thay AC=10 (cm); CB=40 (cm) vào biểu thức trên, ta có:
\(CE^2=10.40=400\Leftrightarrow CE=\sqrt{400}=20\)(cm)
Lại có CE=MN (cmt) => MN =20 (cm).
d) Ta có: \(S_{\frac{1}{2}\left(I\right)}=\frac{\left(\frac{1}{2}AC\right)^2.3,14}{2}=\frac{\left(\frac{1}{2}.10\right)^2.3,14}{2}=39,25\)(cm2)
\(S_{\frac{1}{2}\left(K\right)}=\frac{\left(\frac{1}{2}CB\right)^2.3,14}{2}=\frac{\left(\frac{1}{2}.40\right)^2.3,14}{2}=628\)(cm2)
\(S_{\frac{1}{2}\left(O\right)}=\frac{\left[\frac{1}{2}\left(AC+CB\right)\right]^2.3,14}{2}=\frac{\left(\frac{1}{2}.50\right)^2.3,14}{2}=981,25\)(cm2)
\(\Rightarrow S_{G.H}=S_{\frac{1}{2}\left(O\right)}-\left(S_{\frac{1}{2}\left(I\right)}+S_{\frac{1}{2}\left(K\right)}\right)=981,25-\left(39,25+628\right)=314\)(cm2)
(Chú thích \(S_{G.H}:\)Diện tích hình được giới hạn bở 3 nửa đường tròn).
ĐS:...
a: Xét (A) có
BH,BD là các tiếp tuyến
Do đó: BH=BD và AB là phân giác của góc HAD
AB là phân giác của góc HAD
=>\(\widehat{HAD}=2\cdot\widehat{HAB}\)
Xét (A) có
CE,CH là các tiếp tuyến
Do đó: CE=CH và AC là phân giác của góc HAE
AC là phân giác của góc HAE
=>\(\widehat{HAE}=2\cdot\widehat{HAC}\)
Ta có: \(\widehat{HAE}+\widehat{HAD}=\widehat{DAE}\)
=>\(\widehat{DAE}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)
=>\(\widehat{DAE}=2\cdot\widehat{BAC}=180^0\)
=>D,A,E thẳng hàng
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot HC=AH^2\)
=>\(BD\cdot CE=\left(\dfrac{1}{2}DE\right)^2=\dfrac{1}{4}DE^2\)