Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dưới tử mik tính ra thôi. VD: 12 . 22 = 1.4; 22.32 = 4.9 các tử sau tương tự
\(\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)
= \(\frac{4-1}{1.4}+\frac{9-4}{4.9}+\frac{16-9}{9.16}+...+\frac{100-81}{81.100}\)
= \(\frac{4}{1.4}-\frac{1}{1.4}+\frac{9}{4.9}-\frac{4}{4.9}+\frac{16}{9.16}-\frac{9}{9.16}\)+.....+\(\frac{100}{81.100}-\frac{81}{81.100}\)
= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+....+\frac{1}{81}-\frac{1}{100}\)
.........................................................
\(M=\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\)
\(M=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+\dfrac{4^2-3^2}{3^2.4^2}+...+\dfrac{10^2-9^2}{9^2.10^2}\)
\(M=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)
\(M=1-\dfrac{1}{10^2}< 1\left(đpcm\right)\)
C=1/1x2 + 1/2x3 + 1/3x4 + ... + 1/99x100
=(1 -1/2) +(1/2 -1/3) +(1/3 - 1/4) +......+(1/99 - 1/100)
(gạch bỏ -1/2 và 1/2 ; -1/3 và 1/3 ; .........-1/99 và 1/99)
=1-1/100
=99/100
Ta có:
1/2=50/100
vì 99/100>50/100
nên C>1/2
C = 1/2.3 + 1/ 3.4 + 1/4.5 + ... + 1/99.100
= (1/2-1/3) + (1/3-1/4) + (1/4-1/5) + ... + (1/99-1/100)
= 1/2-1/100
= 49/100
so sánh 49/100 với 1/2
49/100 với 50/100
=) 49/100 < 1/2 (vì 49/100 < 50/100)
chúc bn học tốt
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(=1-\frac{1}{2020}< 1\)
Vậy \(A< 1\left(đpcm\right)\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}-\frac{1}{50}\)
\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}\)
\(\Leftrightarrow B< \frac{3}{4}\left(đpcm\right)\)
a) \(\frac{7^3.5^8}{49.25^4}=\frac{7^3.5^8}{7^2.5^8}=7\)
b) \(\frac{3^9.25.5^3}{15.625.3^8}=\frac{3^9.5^2.5^3}{3.5.5^4.3^8}=\frac{3^9.5^5}{3^9.5^5}=1\)
c) \(\frac{2^{50}.3^{61}+2^{90}.3^{16}}{2^{51}.3^{61}+2^{91}.3^{16}}=\frac{2^{50}.3^{16}\left(3^{45}+2^{40}\right)}{2^{51}.3^{16}\left(3^{45}+2^{40}\right)}=\frac{1}{2}\)
d) \(\left(\frac{2}{5}-\frac{1}{2}\right)^2+\left(\frac{1}{2}+\frac{3}{5}\right)^2\)
\(=\left(\frac{-1}{10}\right)^2+\left(\frac{11}{10}\right)^2\)
\(=\frac{1}{100}+\frac{121}{100}=\frac{122}{100}=\frac{61}{50}\)
=99/100
=> \(C=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)
C = \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+....+\frac{1}{81}-\frac{1}{100}\)
C = \(1-\frac{1}{100}<1\)
=> C < D