K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2020

A D E B C I M N K F

a) +) Chứng minh \(\Delta\)DAC = \(\Delta\)BAE 

Thật vậy: Ta có: AD = AB ( \(\Delta\)DAB đều ) 

                         ^DAB = ^CAE ( = 60\(^o\); \(\Delta\)DAB đều ; \(\Delta\)CAE đều ) => ^DAC = ^BAE 

                           CA = AE ( \(\Delta\)CAE đều )

Từ 3 điều trên => \(\Delta\)DAC = \(\Delta\)BAE ( c.g.c) (1)

=>  ^ABE = ^ADC (2)

+) Xét \(\Delta\)KAD và \(\Delta\)KIB có: ^DKA = ^BKI ( đối đỉnh )

                                                  ^KDA = ^KBI( theo  ( 2)  )

                    mà ^DKA + ^KDA + ^KAD= ^BKI + ^KBI + ^KIB = 180\(^o\)

=>  ^KIB = ^KAD = ^BAD=  60\(^o\)

=> ^DIB = 60\(^o\)

b) Từ (1) => DC = BE mà M là trung điểm DC; N là trung điểm BE 

=> DM  = BN (3) 

+) Xét \(\Delta\)BAN và \(\Delta\)DAM 

có: BN = DM ( theo (3)

     ^ABN = ^ADM ( theo (2)

     AB = AD ( \(\Delta\)ADB đều )

=> \(\Delta\)BAN = \(\Delta\)DAM  (4) 

=> AN = AM  => \(\Delta\)AMN cân tại A  (5)

+) Từ (4) => ^BAN = ^DAM => ^BAM + ^MAN = ^DAB + ^BAM  

=> ^MAN = ^DAB = 60\(^o\)(6)

Từ (5); (6) => \(\Delta\)AMN đều 

c) +) Trên tia đối tia MI lấy điểm F sao cho FI = IB => \(\Delta\)FIB cân tại I 

mà ^BIF = ^BID = 60\(^{\text{​​}o}\)( theo (a))

=> \(\Delta\)FIB đều  (7)

=> ^DBA = ^FBI( =60\(^o\))

=> ^DBF + ^FBA = ^FBA + ^ABI 

=> ^DBF = ^ABI  

Lại có: BI = BF ( theo (7) ) và BA = BD ( \(\Delta\)BAD đều )

Từ (3) điều trên => \(\Delta\)DFB = \(\Delta\)AIB  => ^AIB = ^DFB = 180\(\text{​​}^o\)- ^BFI = 180\(\text{​​}^o\)-60\(\text{​​}^o\)=120\(\text{​​}^o\)

+) Mặt khác ^BID = 60 \(\text{​​}^o\)( theo (a) ) 

=> ^DIE = 180\(\text{​​}^o\)- ^BID = 120 \(\text{​​}^o\)và ^DIA = ^AIB - ^BID = 120\(\text{​​}^o\)-60\(\text{​​}^o\)=60\(\text{​​}^o\)

=> ^AIE = ^DIE - ^DIA = 120\(\text{​​}^o\)-60\(\text{​​}^o\)=60\(\text{​​}^o\)

=> ^DIA = ^AIE ( = 60\(\text{​​}^o\)

=> IA là phân giác ^DIE.

                       

30 tháng 12 2020

Tự vẽ hình nhé

a) Vì AB = AC => tam giác ABC cân tại A 

Xét tam giác ABM và ACM có \(\hept{\begin{cases}AB=AC\\AM\\BM=MC\end{cases}chung}\)

=>\(\Delta ABM=\Delta ACM\)( c.c.c) ( đpcm)

b) Theo a) có \(\Delta ABM=\Delta ACM\) =.> \(\widehat{BAM}=\widehat{CAM}\)

=> AK là tia phân giác ....

c)Xét tam giác BEC và tam giác CEB có

BD = CE ( vì AB = AC mà AD=AE)

góc ABC=góc ACB (tam giác cân)

BC chung 

=> tam giác ....= tam giác....(c.g.c)

=> góc EBC = góc DCB

=> tam giác BCK cân tại K 

=> BK=KC 

Xét tam giác AKB và tam giác AKC có

AB=AC

AK chung

BK=KC

=> tam giác ...=tam giác...(C.C.C)

=> \(\widehat{BAK}=\widehat{CAK}\)

=> AK  là tia phân giác góc ABC\(\)(1)

Mà AM là phân giác góc ABC(2)

Từ (1) và (2) => A,M,K thẳng hàng

5 tháng 2 2018

Câu hỏi của duyvodich10 - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

5 tháng 4 2017

  14

x  3

______

    ?

 toán lớp 2

5 tháng 4 2017

14 x 3 = 42