Tìm một số tự nhiên nhỏ nhất biết rằng khi chia số đó cho 29 thì dư 5 và k...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2016

Gọi số tự nhiên cần tìm là A

Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )

Tương tự:  A = 31q + 28 ( q ∈ N )

Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23

Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1

Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)

                                    =>2q = 29(p – q) – 23 nhỏ nhất

                                    => p – q nhỏ nhất

Do đó p – q = 1 => 2q = 29 – 23 = 6

                        => q = 3

Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121

17 tháng 10 2016

Giả sử số cần tìm là A đã bớt đi 5.

Khi đó A chia hết cho 29, còn A chia cho 31 dư: 29 - 5 = 24

=> A=31x k+24 (k là số tự nhiên) 
Thử chọn: k=0,1,2,3,...ta thấy: khi k=17 thì A=551 chia hết cho 29 
Vậy số cần tìm là: A = 551 + 5 = 556

ĐS: 556

10 tháng 12 2016

Giả sử số cần tìm là a đã bớt đi 5

Khi đó a chia hết cho 29, còn a chia cho 31 dư: 29-5=24

=>a=31xk+24 ( k là số tự nhiên)

Thử chọn từng số ta sẽ thấy k=17 thì a=551 chia hết cho 29

Vậy số cần tìm là a= 551+5=556

14 tháng 12 2015

ai cho mình 2 li-ke cho tròn 125 với

14 tháng 12 2015

xin 8 li ke cho tròn 0 điểm hỏi đáp

6 tháng 10 2016

Gọi số tự nhiên nhỏ nhất cần tìm là a

Do a chia 29 dư 5; chia 31 dư 28

=> a = 29.m + 5 = 31.n + 28 \(\left(m;n\in N\right)\)

=> 29.m = 31.n + 23

=> 29.m = 29.n + 2.n + 23

=> 29.m - 29.n = 2.n + 23

=> 29.(m - n) = 2.n + 23

\(\Rightarrow2.n+23⋮29\)

Để a nhỏ nhất thì n nhỏ nhất => 2.n + 23 nhỏ nhất

Mà 2.n + 23 là số lẻ => 2.n + 23 = 29

=> 2.n = 29 - 23

=> 2.n = 6

=> n = 6 : 2 = 3

=> a = 31.3 + 28 = 121

Vậy số nhỏ nhất cần tìm là 121

 

6 tháng 10 2016

Gọi số tự nhiên cần tìm là A

Chia cho 29 dư 5 nghĩa là: A = 29p + 5 (p \(\in\) N)

Tương tự:  A = 31q + 28 (q \(\in\) N)

Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23

Ta thấy: 2q + 23 là số lẻ => 29(p - q) cũng là số lẻ => p - q \(\ge\) 1

Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)

                                         => 2q = 29(p - q) - 23 nhỏ nhất

                                         => p - q nhỏ nhất

Do đó p - q = 1 => 2q = 29 - 23 = 6

                         => q = 3

Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 93 + 28 = 121

2 tháng 6 2016

c1

Nếu chia hết cho 29 thì chia cho 31 dư 28-5=23.

Hiệu của 31 và 29:         31 - 29 = 2

Thương của phép chia cho 31 là:

(29-23) : 2 = 3

            (Hoặc. Gọi a là thương lúc này của phép chia cho 31.

                        2 x a + 23 = 29        =>     a = 3)

Số cần tìm là:

31 x 3 + 28 = 121

Đáp số:  121

c2

Bài giải:

Gọi số tự nhiên cần tìm là A

Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )

Tương tự:  A = 31q + 28 ( q ∈ N )

Nên: 29p + 5 = 31q + 28=> 29(p - q) = 2q + 23

Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ ==>p – q >=1

Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)

                                    =>2q = 29(p – q) – 23 nhỏ nhất

                                    => p – q nhỏ nhất

Do đó p – q = 1 => 2q = 29 – 23 = 6

                        => q = 3

Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121

tk nha mk trả lời đầu tiên đó!!!

2 tháng 6 2016

Gọi số tự nhiên cần tìm là A Chia cho 29 dư 5 nghĩa là:

                                                    A = 29p + 5 ( p ∈ N )

                                    Tương tự: A = 31q + 28 ( q ∈ N )

Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23

Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1

Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)

=>2q = 29(p – q) – 23 nhỏ nhất

=> p – q nhỏ nhất Do đó p – q = 1

=> 2q = 29 – 23 = 6 => q = 3

Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121