K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
18 tháng 5 2018
a, Xét tứ giác BEHF có: góc BFH + góc BEH = 900 + 900 = 1800
=> Tứ giác BEHF nội tiếp.
b, Xét tứ giác AFEC có :
góc AFC = góc AEC ( = 900) (Hai góc cùng nhìn 1 cạnh dưới 1 góc vuông)
=> Tứ giác AFEC nội tiếp
BH
27 tháng 3 2019
Xét tứ giác BFEC có BFC=BEC =90
mà 2 góc này cùng nhìn cạnh BC nên tứ giác BFCE nội tiếp
b) Ta thấy \(\widehat{BCQ}=\frac{1}{2}\widebat{QB}\\ \widehat{QPB}=\frac{1}{2}\widebat{QB}\\ \Rightarrow\widehat{BCQ}=\widehat{QPB}\)
C) Tứ giác BFEC nội tiếp\(\Rightarrow\widehat{FEB}=\widehat{FCB}\)(cùng nhìn cạnh BF)
\(\Rightarrow\widehat{BÈF}=\widehat{BPQ}\)
MÀ 2 góc ở vị trí đồng vị nên FE//QP
a/ Ta có CF vuông góc AB tại F (gt)
Nên góc CFB = 90 độ
BE vuông góc AC tại E
Nên góc BEC = 90 độ
Tứ giác CEFB có hai đỉnh kề F và E cùng nhìn cạnh BC dưới một góc vuông . Do đó tứ giác CEFB nt
Ta có góc BFC = 90(cmt) độ nên tam giác BFC vuông tại F .
góc BEC = 90 độ (cmt)
Nên tam giác BEC vuông tại E
Tam giác vuông BFC và BEC đều có BC là cạnh huyền nên tâm của đường tròn ngoại tiếp tứ giác là trung điểm của cạnh BC .