\(\frac{2x^2y+2xy+2y}{x^5+x+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{2x^2y+2xy+2y}{x^5+x+1}=\frac{2y\left(x^2+x+1\right)}{x^3.x^2+x+1}=\frac{2y}{x^3}\)

#Học tốt!!!

5 tháng 12 2019

\(\frac{2x^2y+2xy+2y}{x^5+x+1}=\frac{2y\left(x^2+x+1\right)}{x^5-x^2+x^2+x+1}.\)

\(=\frac{2y\left(x^2+x+1\right)}{x^2\left(x^3-1\right)+x^2+x+1}\)

\(=\frac{2y\left(x^2+x+1\right)}{x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1}\)

\(=\frac{2y\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left[x^2\left(x-1\right)+1\right]}\)

\(=\frac{2y}{x^3-x^2+1}\)

24 tháng 5 2017

a)\(\frac{x^2+y^2-1+2xy}{x^2-y^2+1+2x}\)

\(\Leftrightarrow\frac{\left(x+y\right)^2-1}{\left(x+1\right)^2-y^2}\)

\(\Leftrightarrow\frac{\left(x+y+1\right)\left(x+y-1\right)}{\left(x+1-y\right)\left(x+1+y\right)}\)

\(\Leftrightarrow\frac{x+y-1}{x-y+1}\)

b)\(\frac{3x^3-6x^2y+xy^2-2y^3}{9x^5-18x^4y-xy^4+2y^5}\)

\(\Leftrightarrow\frac{3x^2\left(x-2y\right)+y^2\left(x-2y\right)}{9x^4\left(x-2y\right)-y^4\left(x-2y\right)}\)

\(\Leftrightarrow\frac{\left(3x^2+y^2\right)\left(x-2y\right)}{\left(9x^4-y^4\right)\left(x-2y\right)}\)

\(\Leftrightarrow\frac{3x^2+y^2}{\left(3x^2-y^2\right)\left(3x^2+y^2\right)}\)

\(\Leftrightarrow\frac{1}{3x^2-y^2}\)

3 tháng 8 2016

Đề phần a sai

3 tháng 8 2016

bạn sử hộ mình

 

4 tháng 11 2018

\(\frac{2xy}{x^2-y^2}+\frac{x-y}{2x+2y}\)

\(=\frac{2xy}{\left(x-y\right)\left(x+y\right)}+\frac{x-y}{2\left(x+y\right)}\)

\(=\frac{4xy}{2\left(x-y\right)\left(x+y\right)}+\frac{\left(x-y\right)\left(x-y\right)}{2\left(x+y\right)\left(x-y\right)}\)

\(=\frac{4xy+x^2-xy-xy-y^2}{2\left(x-y\right)\left(x+y\right)}\)

\(=\frac{2xy+x^2-y^2}{2\left(x-y\right)\left(x+y\right)}\)

\(=\frac{\left(x-y\right)^2}{2\left(x-y\right)\left(x+y\right)}\)

\(=\frac{x-y}{2\left(x+y\right)}=\frac{x-y}{2x+2y}\)

29 tháng 11 2019

Ta có: \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)

\(=\frac{x^2y+xy^2+xy^2+y^3}{2x^2+2xy-xy-y^2}\)

\(=\frac{xy\left(x+y\right)+y^2\left(x+y\right)}{2x\left(x+y\right)-y\left(x+y\right)}\)

\(=\frac{\left(x+y\right)\left(xy+y^2\right)}{\left(2x-y\right)\left(x+y\right)}=\frac{xy+y^2}{2x-y}\left(đpcm\right)\)

29 tháng 11 2019

Ta có: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)

\(=\frac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}\)

\(=\frac{x\left(x+y\right)+2y\left(x+y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)

\(=\frac{\left(x+2y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}\left(đpcm\right)\)

7 tháng 7 2016

Rút gọn :

a ) \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)

\(=\frac{y\left(x^2+2xy+y^2\right)}{2x^2+2xy-xy-y^2}\)

\(=\frac{y\left(x+y\right)^2}{2x\left(x+y\right)-y\left(x+y\right)}\)

\(=\frac{y\left(x+y\right)}{2x-y}\)

\(=\frac{xy+y^2}{2x-y}\)

7 tháng 7 2016

Cảm ơn bạn nha Tuấn hihi

15 tháng 12 2018

\(\frac{x}{x-2y}+\frac{x}{x+2y}+\frac{4xy}{4y^2-x^2}\)

\(=\frac{x\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{x\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{-4xy}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{x^2+2xy+x^2-2xy-4xy}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\frac{2x^2-4xy}{\left(x-2y\right)\left(x+2y\right)}\)