Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2^{100}-2^{99}+2^{98}-2^{97}+....+2^2-2\)
\(2A=2^{101}-2^{100}+2^{99}-2^{98}+....+2^3-2^2\)
\(2A+A=2^{101}-2\)
\(A=\frac{2^{101}-2}{3}\)
b) tương tự
\(B=\frac{3^{101}+1}{4}\)
\(3.M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{38}}\)
=> \(3M-M=2M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{38}}-\frac{1}{3}-\frac{1}{3^2}-...-\frac{1}{3^{39}}\)
=> \(2M=1-\frac{1}{3^{39}}\)
=> \(M=\frac{1}{2}\left(1-\frac{1}{3^{39}}\right)\)
do \(1-\frac{1}{3^{39}}< 1\)
=> \(\frac{1}{2}\left(1-\frac{1}{3^{39}}\right)< \frac{1}{2}.1=\frac{1}{2}\)
Vay \(M< \frac{1}{2}\)
Chuc bn hoc tot !
nhanh nhé các bạn ơi ai trả lời đầu tiên nhanh nhất mà còn đúng mình sẽ k cho
A=2^100-2^99+2^98-2^97+..+2^2-2
=>2A=2^101-2^100+2^99-2^98+...+2^3-2^2
=>2A+A=(2^101-2^100+2^99-2^98+..+2^3-2^2)+(2^100-2^99+2^98-2^97+..+2^2-2)
=>3A=2^101-2
=>A=(2^101-2)/3