Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
uk đi đi cho đỡ tốn diện tích khi Nam đăg câu hỏi câu trả lời của Nam
Câu 6: Tìm giá trị nhỏ nhất của biểu thức : \(A=x^2-2x+2\)
\(A=x^2-2x+2\)
\(A=\left(x^2-2.x.1+1^2\right)+2\)
\(A=\left(x-1\right)^2+2\)
Nhận xét : \(\left(x-1\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-1\right)^2+2\ge2\) với mọi x
\(\Rightarrow A\ge2\)
Vậy biểu thức A bằng 2 đạt được khi :
\(\left(x-1\right)^2=0\)
\(x-1=0\)
\(x=1\)
đề 1 bài 4
xét tam gics ABC và tam giác HBA có
góc B chung
góc BAC = góc BHA (=90 độ)
=> tam giác ABC đồng dạng vs tam giác HBA (g.g)
=> AB/HB=BC/AB=> AB^2=HB *BC
áp dụng đl py ta go trog tam giác vuông ABC có
BC^2 = AB^2 +AC^2=6^2+8^2=100
=> BC =\(\sqrt{100}\)=10 cm
ta có tam giác ABC đồng dạng vs tam giác HBA (cm câu a )
=> AC/AH=BC/BA=>AH=8*6/10=4.8CM
=>AB/BH=AC/AH=> BH=6*4.8/8=3,6cm
=>HC =BC-BH=10-3,6=6,4cm
dề 1 bài 1
5x+12=3x -14
<=>5x-3x=-14-12
<=>2x=-26
<=> x=-12
vạy S={-12}
(4x-2)*(3x+4)=0
<=>4x-2=0<=>x=1/2
<=>3x+4=0<=>x=-4/3
vậy S={1/2;-4/3}
đkxđ : x\(\ne2;x\ne-3\)
\(\dfrac{4}{x-2}+\dfrac{1}{x+3}=0\)
<=> 4(x+3)/(x-2)(x+3)+1(x-2)/(x-2)(x+3)
=> 4x+12+x-2=0
<=>5x=-10
<=>x=-2 (nhận)
vậy S={-2}
Câu 1 : Làm tính nhân :
a) \(2x\left(x^2-7x-3\right)\)
\(=2x^3-14x-6x\)
b) \(\left(-2x^3+3y^2-7xy\right).4xy^2\)
\(=-8x^4y^2+3x-28x^2y^3\)
c) \(\left(25x^2+10xy+4y^2\right).\left(5x-2y\right)\)
\(=-50x^2y-20xy^2-8y^3+125x^3+50x^2y+20xy^2\)
\(=-8y^3+125x^3\)
d) \(\left(5x^3-x^2+2x-3\right)\left(4x^2-x+2\right)\)
\(=10x^3-2x^2+4x-6-5x^4+x^3-2x^2+3x+20x^5-4x^4+8x^3-12x^2\)
\(=20x^5-9x^4+19x^3-16x^2-7x-6\)
Câu 3: phân tích
a)\(4x-8y\)
\(=4\left(x-2y\right)\)
b)\(x^2+2xy+y^2-16\)
\(=\left(x+y\right)^2-4^2\)
\(=\left(x+y-4\right)\left(x+y+4\right)\)
c)\(3x^2+5x-3xy-5y\)
\(=3x^2-3xy+5x-5y\)
\(=3x\left(x-y\right)+5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x+5\right)\)
Đề số 3.
1.
a,\(4x\left(5x^2-2x+3\right)\)
\(=20x^3-8x^2+12x\)
b.\(\left(x-2\right)\left(x^2-3x+5\right)\)
\(=x^3-3x^2+5x-2x^2+6x-10\)
\(=x^3-5x^2+11x-10\)
c,\(\left(10x^4-5x^3+3x^2\right):5x^2\)
\(=2x^2-x+\dfrac{3}{5}\)
d,\(\left(x^2-12xy+36y^2\right):\left(x-6y\right)\)
\(=\left(x-6y\right)^2:\left(x-6y\right)\)
\(=x-6y\)
2.
a,\(x^2+5x+5xy+25y\)
\(=\left(x^2+5x\right)+\left(5xy+25y\right)\)
\(=x\left(x+5\right)+5y\left(x+5\right)\)
\(=\left(x+5y\right)\left(x+5\right)\)
b,\(x^2-y^2+14x+49\)
\(=\left(x^2+14x+49\right)-y^2\)
\(=\left(x+7\right)^2-y^2\)
\(=\left(x+7-y\right)\left(x+7+y\right)\)
c,\(x^2-24x-25\)
\(=x^2+25x-x-25\)
\(=\left(x^2-x\right)+\left(25x-25\right)\)
\(=x\left(x-1\right)+25\left(x-1\right)\)
\(=\left(x+25\right)\left(x-1\right)\)
3.
a,\(5x\left(x-3\right)-x+3=0\)
\(5x\left(x-3\right)-\left(x-3\right)=0\)
\(\left(5x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{5}\) hoặc \(x=3\)
b.\(3x\left(x-5\right)-\left(x-1\right)\left(2+3x\right)=30\)
\(3x^2-15x-\left(2x+3x^2-2-3x\right)=30\)
\(3x^2-15x-2x-3x^2+2+3x=30\)
\(-14x+2=30\)
\(-14x=28\)
\(x=-2\)
c,\(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(x^2+3x+2x+6-\left(x^2+5x-2x-10\right)=0\)
\(x^2+5x+6-x^2-5x+2x+10=0\)
\(2x+16=0\)
\(2x=-16\)
\(x=-8\)
Mình học chật hình không giúp bạn được.Xin lỗi!
\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{2014}{2015!}\)
\(=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+\frac{4}{4!}-\frac{1}{4!}+...+\frac{2015}{2015!}-\frac{1}{2015!}\)
\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{2014!}-\frac{1}{2015!}\)
\(=1-\frac{1}{2015!}< 1\left(đpcm\right)\)
Đặt điều kiện :
\(B=\frac{\sqrt{x-1}+\sqrt{x}+\sqrt{x-1}-\sqrt{x}}{\left(\sqrt{x-1}-\sqrt{x}\right)\left(\sqrt{x-1}+\sqrt{x}\right)}+\frac{x\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(B=\frac{2\sqrt{x-1}}{x-1-x}+x\)
\(B=-2\sqrt{x-1}+x\)
▲ B \(\Leftrightarrow\frac{\sqrt{x-1}+\sqrt{x}+\sqrt{x-1}-\sqrt{x}}{\left(\sqrt{x-1}-\sqrt{x}\right)\times\left(\sqrt{x-1}+\sqrt{x}\right)}+\frac{x\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
B \(\Leftrightarrow\frac{2\left(\sqrt{x-1}\right)}{x-1-x}+x\)
B \(\Leftrightarrow x+2\sqrt{x-1}\)