K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài quen quen, hình như là bài mình đăng

Bài 1) 

a) Xét ∆ vuông ABK và ∆ vuông EBK ta có : 

AK = KC 

BK chung 

=> ∆ABK = ∆EBK ( ch-cgv)

=> AB = BE

=> ∆ABE cân tại B 

Mà ABK = EBK 

Hay BK là phân giác ABE 

=> ∆ABE cân có BK là phân giác 

=> BK là trung tuyến đồng thời là đường cao

=> BK\(\perp\)AE

b) Gọi H là giao điểm BK và DC 

Xét ∆ vuông AKD và ∆ vuông EKC ta có

AK = KE 

AKD = EKC ( đối đỉnh) 

=> ∆AKD = ∆EKC ( cgv-gn)

=> AD = EC ( tương ứng) 

Mà ∆ABE cân tại B (cmt)

=> AB = AE 

Mà AB + AD = BD 

BE + EC = BC 

=> BD = BC 

=> ∆BDC cân tại B 

=> BDC = \(\frac{180°-B}{2}\)

Vì ∆ABE cân tại B 

=> BAE = \(\frac{180°-B}{2}\)

=> BAE = BDC

Mà 2 góc này ở vị trí đồng vị 

=> AE//DC 

Vì H là giao điểm DC và BK

=> BH là phân giác DBC 

Mà ∆BDC cân tại B (cmt)

=> BK đồng thời là trung tuyến và đường cao

=> BH \(\perp\)DC

Hay BK \(\perp\)DC 

Bài 2)

Vì ∆ABC cân tại A

=> AB = AC 

=> ABC = ACB 

Xét ∆ vuông ABK và ∆ vuông ACE ta có : 

AB = AC 

A chung 

=> ∆ABK = ∆ACE ( ch-gn)

=> ABK = ACE ( tương ứng) 

Xét ∆AOB và ∆AOC ta có : 

AB = AC 

ABK = ACE 

AO chung

=> ∆AOB = ∆AOC (c.g.c)

=> BAO = CAO 

Hay AO là phân giác BAC 

b) Vì ∆AKB = ∆AEC (cmt)

=> AE = AK 

Mà AB = AC 

=>EB = KC

Xét ∆ vuông KOC và ∆ vuông EOB ta có 

EB = KC 

EOB = KOC ( đối đỉnh) 

=> ∆KOC = ∆EOB ( cgv-gn)

=> OB = OC 

=> ∆OBC cân tại O 

c) Xét ∆ cân ABC ta có :

AO là phân giác BAC 

AI là trung tuyến BC 

=> AI đồng thời là phân giác và là đường cao

=> A , O , I thẳng hàng

Theo đề bài ta có :

góc ABD = góc DBC

mà AB // Dy nên :

góc ABD = góc BDy

góc DBC = góc ADB

vì Bx // Et nên :

góc BDE = góc DEt

góc DBC = góc tEC

=> góc tEC = góc DEt

=> Et là tia phân giác của góc CED

đây giải có khi sai nên trước khi chép vào cân nhắc kĩ nhé

29 tháng 7 2019

bạn ơi bạn biết vẽ hình ko 

1 tháng 5 2019

a, xét 2 tam giác vuông AEC và AED có:

            AC=AD(gt)

            AE cạnh chung

=> t.giác AEC=t.giác AED(cạnh huyền-cạnh góc vuông)

=> \(\widehat{CAE}\)=\(\widehat{DAE}\)=> AE là p/g của \(\widehat{CAD}\)<=> AE là p/g của \(\widehat{CAB}\)

b, xét t.giác AIC và t.giác AID có:

           AI cạnh chung

         \(\widehat{IAC}\)=\(\widehat{IAD}\)(theo câu a)

          AC=AD(gt)

=> t.giác AIC=t.giác AID(c.g.c)

=> IC=ID=> I là trung điểm của CD(1)

\(\widehat{AIC}\)=\(\widehat{AID}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIC}\)=\(\widehat{AID}\)=90 độ=> AI\(\perp\)CD(2)

từ (1) và (2) suy ra AE là trung trực của CD

A B C D E I

4 tháng 10 2019

có vẽ hình ko

29 tháng 7 2019

a) Xét tam giác BAD và tam giác BAC, có:

          góc BAD = góc BAC = 90o              (gt)

          BA: cạnh chung

          góc ABD = góc ABC                (Vì AB là p/g của BC)

Nên: Tam giác BAD = tam giác BAC                      ( g - c - g)

=> BD = BC                     (2 cạnh t/ư)

Ta có: AC vuông góc với AB                            (gt)

           AC vuông góc với CF                            (gt)

   => AB // CF                    (Quan hệ từ _|_ -> //)

Nên: góc ABC = góc FCB                         (2 góc so le trong = nhau)

Lại có: CD vuông góc với CF                       (gt)

            BF vuông góc với CF                       (gt)

=> CD // BF                     (Quan hệ từ _|_ -> //)

Hay: AC // BF

Do đó: góc ACB = góc FBC                       (2 góc so le trong = nhau)

Xét tam giác BFC và tam giác CAB, có:

          góc FBC = góc ACB                         (cmt)

          BC: cạnh chung

          góc FCB = góc ABC                         (cmt)

Nên: tam giác BFC = tam giác CAB                              ( g - c - g)

   => góc BAC = góc CFB                        ( 2 góc t/ư)

 Mà: góc BAC = 90o

Do đó: góc CFB = góc BAC = 90o

Xét tam giác BEF và tam giác BCF, có:

          góc EBF = góc CBF                       (Vì BF là p/g của góc CBE)

          BF: cạnh chung

          góc BFE = góc BFC = 90o                       (cmt)

Nên: tam giác BEF = tam giác BCF                      ( g - c - g)

Vậy góc BCF = góc BEF                        ( 2 góc t/ư)

Hay: góc BCE = góc BEC                        (đpcm)

b) Trong tam giác ABC, có:

            góc A + góc B + góc C = 180o                   (T/c tổng 3 góc trong 1 tam giác)

Vậy ........

c)Ta có: góc BFC = 90o                   (cm câu a)

Vậy BF vuông góc với CE                         (đpcm)

Mk ko chắc chắn ở câu b nhé!