K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2017

đề bài có bị lỗi ko bạn

7 tháng 6 2017

đề bài có lỗi ko bạn

12 tháng 6 2018

Cho hai số hữu tỉ a/b và c/d,Chứng minh nếu a/b < c/d thì ad < bc,Chứng minh nếu ad < bc thì a/b < c/d,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

Làm nhắn gọn hơn thì

1
a/b < c/d
=> ad/bd < cb/db
=> ad < cb

2
​ad < cb
=>ad /bd < cb/bd

Chúc pn hc tốt

8 tháng 9 2017

Bài làm

- Xét a(b+2001)=ab+2001a

        b(a+2001)=ab+2001b

- Ta xét 3 trường hợp sau:

+Nếu a>b =>2001a>2001b

                 =>a(b+2001)>b+(a+2001)

                 =>a/b > a+2001/b+2001

+Nếu a<b =>2001a<2001b

                 =>a(b+2001)<b+(a+2001)

                 =>a/b < a+2001/b+2001

+Nếu a=b =>a/b = a+2001/b+2001

8 tháng 9 2017

a, Ta có: \(\hept{\begin{cases}\frac{a}{b}=\frac{ad}{bd}\\\frac{c}{d}=\frac{bc}{bd}\end{cases}}\)

Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\)

b, Ta có: \(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow\frac{a}{b}< \frac{c}{d}\)

6 tháng 6 2019

a) \(\frac{a}{b}< \frac{c}{d}\)\(\Rightarrow\frac{ad}{bc}< \frac{bc}{bd}\)\(\Rightarrow ad< bc\)

b) ad < bc \(\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\)( vì bd > 0 )\(\Rightarrow\frac{a}{b}< \frac{c}{d}\)

a) Ta có:  \(\hept{\begin{cases}\frac{a}{b}=\frac{ad}{bd}\\\frac{c}{d}=\frac{cb}{db}\end{cases}}\)

Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{cb}{bd}\Rightarrow ad< cb\)

b) Nếu \(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow\frac{a}{b}< \frac{c}{d}\)

       

6 tháng 11 2017

a) a/b=ad/bd

c/d=cb/db

mà a/b<c/d=>ad/bd<cb/bd=>ad<bc

b)ad<bc=>ad/bd<bc/bd=> a/b<c/d

6 tháng 6 2019

#)Sửa đề : 

CMR : Nếu a/b < c/d (b,d thuộc N*) thì a/b < a+c/ b+d < c/d

#)Giải :

\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bc}< \frac{cb}{bd}\)

Vì b, d thuộc N* => ad < bc

=> ad + ab < bc + ab => a( b + d ) < b( a + c ) => \(\frac{a}{b}< \frac{a+c}{b+d}\)

Tương tự, ta có :

\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\left(đpcm\right)\)

27 tháng 8 2015

Ta có : \(\frac{a}{b}<\frac{c}{d}\Rightarrow\frac{ad}{bd}<\frac{cb}{bd}\)

\(\Rightarrow\)\(ad\)\(<\)\(cb\) (vì \(bd>0\))  \(\left(1\right)\)

\(\frac{a}{b}=\frac{a\left(b+d\right)}{b\left(b+d\right)}=\frac{ab+ad}{b\left(b+d\right)}\)

\(\frac{a+c}{b+d}=\frac{\left(a+c\right)b}{\left(b+d\right)b}=\frac{ab+cb}{b\left(b+d\right)}\)

vì \(b,d>0\Rightarrow b\left(b+d\right)>0\)   \(\left(1\right)\)

vì \(ad\)\(<\)\(cd\Rightarrow\)\(ab+ad\)\(<\)\(ab+cb\)   \(\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\)  \(\Rightarrow\) \(\frac{ab+ad}{b\left(b+d\right)}<\frac{ab+cb}{b\left(b+d\right)}\)

  hay \(\frac{a}{b}<\frac{a+c}{b+d}\) \(\left(\cdot\right)\)

    \(\frac{a+c}{b+d}=\frac{d\left(a+c\right)}{d\left(b+d\right)}=\frac{ad+cd}{d\left(b+d\right)}\)

     \(\frac{c}{d}=\frac{c\left(b+d\right)}{d\left(b+d\right)}=\frac{cb+cd}{d\left(b+d\right)}\)

Vì \(ad\)\(<\)\(cd\Rightarrow\)\(ad+cd<\)\(cb+cd\)    \(\left(3\right)\)

Từ \(\left(1\right)\) và \(\left(3\right)\) \(\Rightarrow\frac{ad+cd}{d\left(b+d\right)}<\frac{cb+cd}{d\left(b+d\right)}\)

     hay \(\frac{a+c}{b+d}<\frac{c}{d}\)    \(\left(\cdot\cdot\right)\)

Từ \(\left(\cdot\right)\) và \(\left(\cdot\cdot\right)\Rightarrow\frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d}\)

 

23 tháng 8 2020

dễ quá !!!