Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
• áp dụng định lí pytago trong tam giác ABC vuông tại A, ta có :
BC^2 = AC^2 + AB^2
BC^2 = 3^2 + 4^2
BC^2 = 9 + 16
BC^2 = 25
BC = căn bậc 2 của 25
BC = 5 ( cm )
vậy BC = 5 cm
• diện tích của tam giác ABC là :
3 . 4 : 2 = 6 ( cm^2 )
vậy diện tích của tam giác ABC là 6 cm^2
b. xét tam giác HBA và tam giác HAC, ta có :
góc HBA = góc HAC ( hai góc kề bù )
góc A là góc chung ( gt )
do đó: tam giác HBA và tam giác HAC là hai tam giác đồng dạng ( g - g )
c. HA/HB = HC/HA ( cmt )
=> HA^2 = HB . HC
d. vì BD = 1/2BC ( t/chất của đường phân giác trong tam giác vuông )
nên BD = 1/2 . 5 = 2,5 ( cm )
mà BD = DC = 1/2BC
=> DC = 2,5 ( cm )
vậy BC , DC = 2,5 cm
a: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
BH=3^2/5=1.8cm
\(S_{BCA}=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)
b Xét ΔHBA vuông tại H và ΔHAC vuông tại H co
góc HBA=góc HAC
=>ΔHBA đồng dạng với ΔHAC
c: ΔHBA đồng dạng với ΔHAC
=>HB/HA=HA/HC
=>HA^2=HB*HC
d: ΔABC có AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=5/7
=>BD=15/7cm; CD=20/7cm
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng vơi ΔHBA
=>AC/HA=AB/HB=BC/AB
=>AB^2=BH*BC; AC*AB=AH*BC
b: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạngvới ΔHAC
=>CA/CH=CB/CA
=>CA^2=CH*CB
d: AI/IC=AB/BC
KH/AH=BH/BA
mà AB/BC=BH/BA
nên AI/IC=KH/AH
a.
Xét hai tam giác vuông HBA và ABC có:
\(\left\{{}\begin{matrix}\widehat{HBA}\text{ chung}\\\widehat{AHB}=\widehat{BAC}=90^0\end{matrix}\right.\)
\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g.g\right)\)
b.
Áp dụng định lý Pitago:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
Do \(\Delta HBA\sim\Delta ABC\left(cmt\right)\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{BC}\)
\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)
Áp dụng định lý Pitago trong tam giác vuông HBA:
\(BH=\sqrt{AB^2-AH^2}=\sqrt{6^2-4,8^2}=3,6\left(cm\right)\)
A B C H I 3 5 K M N
a) Xét \(\Delta ABC\)và \(\Delta HBA\)có
\(\widehat{A}=\widehat{H}=90^o\)
\(\widehat{B}\)là góc chung
\(\Rightarrow\Delta ABC~\Delta HBA\left(g.g\right)\)
\(\Leftrightarrow\frac{AB}{BH}=\frac{AC}{AH}\Leftrightarrow AB.AH=BH.AC\left(đpcm\right)\)
b) Xét \(\Delta HBA\)vuông tại H theo định lý PYTAGO ta co
\(\Rightarrow HA=\sqrt{AB^2-BH^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
Vì BI là phân giác của góc ABH
\(\Rightarrow\frac{AI}{AB}=\frac{IH}{BH}\Leftrightarrow\frac{AI}{5}=\frac{IH}{3}\)và AI + IH = HA = 4
Theo tính chất dãy tỉ số bằng nhau ta có
\(\frac{AI}{5}=\frac{IH}{3}=\frac{AI+IH}{5+3}=\frac{4}{8}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}\frac{AI}{5}=\frac{1}{2}\Leftrightarrow AI=\frac{5.1}{2}=2,5\left(cm\right)\\\frac{IH}{3}=\frac{1}{2}\Leftrightarrow IH=\frac{3.1}{2}=1,5\left(cm\right)\end{cases}}\)
c) Xét tam giác CHA và tam giác AHB
\(\widehat{H}=\widehat{H}=90^o\)
\(\widehat{A}=\widehat{B}\)( cùng phụ góc C)
=> Tam giác CHA ~ tam giác AHB (gg)
\(\Rightarrow\frac{AC}{AB}=\frac{AH}{HB}\Leftrightarrow\frac{AC}{AH}=\frac{AB}{HB}\)(*)
Vì BI là phân giác của tam giác AHB
\(\Leftrightarrow\frac{AI}{AH}=\frac{AB}{BH}\left(1\right)\)
Vì CK là phân giác của tam giác AHC
\(\Leftrightarrow\frac{CK}{KH}=\frac{AC}{AH}\left(2\right)\)
Từ (1), (2) và (*)
\(\Rightarrow\frac{AI}{AH}=\frac{CK}{KH}\Leftrightarrow KI//AC\left(taletdao\right)\)
d) Gọi N là giao điểm của HM và AC
=> bài toán trở thành chứng minh N là trung điểm
bạn ơi đề cho N là trung điểm rồi mà sao phải chứng minh
1.Xét ΔHBA và ΔABC có:
góc AHB=góc BAC=90o
Góc B chung
=> ΔABC đồng dạng ΔHBA (g.g)
=>\(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)\(\Rightarrow BA.BA=BH.BC\)
2. Xét ΔHBI và ΔABE có:
góc ABE=IBH (Vì BE là tia phân giác của góc B, I nằm trên BE)
góc BAE=góc IHB=90o
=>ΔHBI đồng dạng ΔABE (g.g)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó:ΔABC\(\sim\)ΔHBA
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\)
Do đó:ΔHBA\(\sim\)ΔHAC
c: \(BH=\sqrt{15^2-12^2}=9\left(cm\right)\)
\(BC=\dfrac{AB^2}{BH}=\dfrac{15^2}{9}=25\left(cm\right)\)
\(AC=\sqrt{25^2-15^2}=20\left(cm\right)\)
d: ta có: ΔHBA\(\sim\)ΔHAC
nên HB/HA=HA/HC
hay \(HA^2=HB\cdot HC\)