\(\Delta ABC\) có AB = 3cm, AC = 4 cm, BC = 5 cm

a) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2018

A B C 3 5 4 D E F 1 2 3 4 1 2 1 2 1 2

a) Ta có : \(BC^2\)\(5^2\)= 25 cm

                \(AB^2\)\(AC^2\)\(3^2\)+\(4^2\)= 25 cm

Áp dụng định lí Py-ta-go đảo ta có :

      \(BC^2\)\(AB^2\)+\(AC^2\)( 25 = 25)

Vậy \(\Delta\)ABC là \(\Delta\)vuông và vuông tại A

b) Xét \(\Delta\)BAD và \(\Delta\)BED có

        \(\widehat{B_1}\)\(\widehat{B_2}\)( do BD là tia phân giác \(\widehat{B}\))

         AB = BE ( GT )

        BD cạnh chung

Vậy \(\Delta\)BAD = \(\Delta\)BED ( c-g-c )

Hình tự vẽ

phần a cậu có thể tự làm :))

b+c)Xét \(\Delta\)ABD và\(\Delta\) EBD có:

AB=AE(gt)

BD(chung)

góc B1 = góc B2

=> \(\Delta\)ABD=\(\Delta\)EBD

=> AD=DE

=>\(\Delta\)ADE cân tại D(2)

Mà BD là tia pg(1)

Từ (1) và (2) => BD là đường cao của tam giác ABC

=> BD\(\perp\) AE

~Hok tốt~

               

\(\Delta\)

À ừ :vv tớ giải all lại nek

a) \(\Delta\)ABC là tam giác vuông

b+c) Xét \(\Delta\)ABD và \(\Delta\) EBD có:

AB=BE(gt)

BD(chung)

Góc B1=góc B2

=>\(\Delta\)ABD=\(\Delta\)EBD

=>AD= ED

=>\(\Delta\)ADE cân tại D(1)

Mà BD là tí pg của góc B(2)

Từ (1) và (2) => BD là đường cao của \(\Delta\)ABC

=>BD\(\perp\)AE

d) Ta có: BD\(\perp\) FC

               AE\(\perp\)BC

Mà D là trực tâm 

=> AE // FC

~Hok tốt :^~

               

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

26 tháng 12 2018

a) . Xét\(\Delta ABE\) và  \(\Delta ADE\) có:

     BA = DA (gt)

     Góc BAE = góc DAE ( gt)

    AE cạnh chung

nên \(\Delta ADE\) =   \(\Delta ABE\)( c-g-c)

b) Ta có :\(\widehat{ABI}+\widehat{AIB}+\widehat{BAI}\)\(^{180^o}\)

    Suy ra : \(\widehat{AIB}\)  = \(180^o\)\(\widehat{ABI}-\widehat{BAI}\)

               \(\widehat{AID}+\widehat{DAI}+\widehat{IDA}\)=\(^{180^o}\)

    Suy ra: \(\widehat{AID}\)\(180^O\) -     \(\widehat{ADI}\)-\(\widehat{IAD}\)

   Mà \(\widehat{BAI}=\widehat{IAD}\left(gt\right)\)

         \(\widehat{ABI}=\widehat{ADI}\)(\(\Delta ABD\)cân tại A)

   \(\Rightarrow\)\(\widehat{AID}=\widehat{AIB}\)

Ta có: \(\widehat{AID}+\widehat{AIB}=180^o\)( 2 GÓC KỀ BÙ )

MÀ  \(\widehat{AID}=\widehat{AIB}\)( CHỨNG MINH TRÊN )

NÊN \(\widehat{AIB}=\widehat{AIB}=\frac{180^O}{2}=90^O\)

HAY   \(AE\perp BD\)

29 tháng 4 2019

Hình tự vẽ nha 

a ) Vì AB = 3 ( gt ) => AB2 = 9

          AC = 4 ( gt ) => AC2 = 16

          BC = 5 ( gt ) => BC2 = 25

MÀ 25 = 9 + 16

DO đó BC2 = AB2 + AC2

=> \(\Delta\)ABC vuông tại A ( định lí đảo định lí py ta go )

Vậy  \(\Delta\)ABC vuông tại A

29 tháng 4 2019

b ) Vì  \(\Delta\)ABC vuông tại A ( CM a ) => BAC = 90o hay BAD = 90o

Vì DE \(\perp\)BC ( gt ) => BED = DEC = 90o ( định nghĩa 2 đường thẳng vuông góc )

Vì BD là tia phân giác  của góc B ( gt ) => ABD = EBD 

Xét  \(\Delta\)ABD và \(\Delta\)EBD có :

ABD = EBD ( cmt )

BD chung

BAD = BED ( = 90o )

DO đó \(\Delta\)ABD = \(\Delta\)EBD ( cạnh huyền - góc nhọn )

=> DA = DE ( 2 cạnh tương ứng )

Vậy ..

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0
25 tháng 5 2018

Bạn cũng xem '' Yêu em từ cái nhìn đầu tiên '' à ?