K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

\(\widehat{ABH}=\widehat{BDC}\)

Do đó:ΔAHB\(\sim\)ΔBCD

2: Ta có: ΔAHB\(\sim\)ΔBCD

nên \(\dfrac{BC}{AH}=\dfrac{CD}{HB}\)

hay BC/CD=AH/HB

mà BC/CD=EB/ED

nên EB/ED=AH/HB

hay \(EB\cdot HB=AH\cdot ED\)

a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có

góc ADB chung

=>ΔHAD đồng dạng với ΔABD

b: ΔHAD đồng dạng vơi ΔABD

=>DH/DA=DA/DB

=>DA^2=DH*DB

a) Xét ΔAHB vuông tại H và ΔBCD vuông tại C có 

\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//DC)

Do đó: ΔAHB\(\sim\)ΔBCD(g-g)

b) Xét ΔBCD có CE là đường phân giác ứng với cạnh BD(gt)

nên \(\dfrac{EB}{ED}=\dfrac{BC}{CD}\)(Tính chất đường phân giác của tam giác)(1)

Ta có: ΔAHB\(\sim\)ΔBCD(cmt)

nên \(\dfrac{AH}{BC}=\dfrac{HB}{CD}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AH}{HB}=\dfrac{BC}{CD}\)(2)

Từ (1) và (2) suy ra \(\dfrac{AH}{HB}=\dfrac{EB}{ED}\)

hay \(AH\cdot ED=HB\cdot EB\)(đpcm)

5 tháng 3 2023

a) Xét ΔAHB vuông tại H và ΔBCD vuông tại C có 

góc ABH = góc BDC(hai góc so le trong, AB//DC)

góc BCD = góc AHB(hai góc vuông)

Do đó: ΔAHBΔBCD(g-g)

b) Xét ΔBCD có CE là đường phân giác ứng với cạnh BD(gt)

nên \(\dfrac{EB}{ED}\)=\(\dfrac{BC}{CD}\)(Tính chất đường phân giác của tam giác)(1)

Ta có: ΔAHB∼∼ΔBCD(cmt)

nên\(\dfrac{AH}{BC}\)=\(\dfrac{HB}{CD}\)(Các cặp cạnh tương ứng tỉ lệ)

hay\(\dfrac{AH}{BH}\)=\(\dfrac{BC}{CD}\)(2)

Từ (1) và (2) suy ra \(\dfrac{AH}{BH}\)=\(\dfrac{EB}{ED}\)

hay AH⋅ED=HB⋅EB(đpcm)

 

a: \(NQ=\sqrt{16^2+12^2}=20\left(cm\right)\)

NP/NQ=12/20=3/5

b: Xét ΔMHN vuông tại H và ΔNPQ vuông tại P co

góc MNH=góc NQP

=>ΔMHN đồg dạng với ΔNPQ

\(MH=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)

c: Xét ΔMQN vuông tại M có MH là đường cao

nên MQ^2=QH*QN

12 tháng 6 2020

Hình vẽ bị lỗi. Bạn thông cảm!

a) Xét \(\Delta\)KBA và \(\Delta\)CDB có: 

^BKA = ^DCB = 90 độ 

^KBA = ^CDB ( so le trong ) 

=> \(\Delta\)KBA ~ \(\Delta\)CDB  (g-g) 

b) Xét \(\Delta\)ADB  có: 

\(S\left(ADB\right)=\frac{1}{2}AD.AB=\frac{1}{2}AK.BD\)(1)

mà AB = 8cm ; AD = BC = 6cm ( ABCD là hình chữ nhật) ; BD = \(\sqrt{AD^2+AB^2}=\sqrt{6^2+8^2}=10\)(cm)

(1) => AD.AB = AK.BD => AK = 6.8 : 10 = 4,8 ( cm) 

\(S\left(KBA\right)=\frac{1}{2}AK.KB\)

với KA = 4,8 cm và KB = \(\sqrt{AB^2-AK^2}=\sqrt{8^2-4,8^2}=6,4\)(cm)

=> \(S\left(KBA\right)=\frac{1}{2}AK.KB=\frac{1}{2}4,8.6,4=15,36\)(cm^2)

c) Áp dụng tính chất phân giác ta có: 

\(\frac{BA}{BD}=\frac{FA}{FD};\frac{BK}{BA}=\frac{EK}{EA}\)(1)

Xét \(\Delta\)BAK và \(\Delta\)BDA có: ^BKA = ^BAD = 90 độ và ^B chung 

=> \(\Delta\)BAK ~ \(\Delta\)BDA ( g-g) 

-> \(\frac{BA}{BD}=\frac{BK}{BA}\)(2)

Từ (1); (2) => \(\frac{FA}{FD}=\frac{EK}{EA}\)=> EA.FA= EK.FD

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

góc ABH=góc BDC

=>ΔAHB đồng dạng với ΔBCD
b: ED/EB=AD/AB

mà AD/AB=HB/AH

nên ED/EB=HB/AH

=>ED*AH=EB*HB