Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phần I hôm qua mình trl rồi .
Phần II
Câu 1: Chỉ ra các phương thức biểu đạt chính của văn bản?
Các PTBĐ : Tự sự , miêu tả , biểu cảm .
Câu 2: Kể tên ít nhất 2 truyện cổ hoặc 2 câu ca dao được gợi nhớ trong khổ thơ 1 và 2.
- 2 truyện cổ tích được gợi nhớ trong khổ 1 & 2 :
+ Tấm cám .
+ Sự tích cây Khế.
1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+=???
Phép tính như thế thì mời nhà toán hok về lm giùm!
KO NÊN ĐĂNG CÂU HỎI LINH TINH!
#Biinz_Tổng's
#Dương_Hoàng_Anh
\(2tan^2x-2\sqrt{3}tanx-3=0\)
\(\orbr{\begin{cases}tanx=\frac{3+\sqrt{3}}{2}\\tanx=\frac{-3+\sqrt{3}}{2}\end{cases}}\)
\(\orbr{\begin{cases}tanx=tana\\tanx=tanb\end{cases}}\) Đặt \(tana=\frac{3+\sqrt{3}}{2};tanb=\frac{-3+\sqrt{3}}{2}\)
\(\orbr{\begin{cases}x=a+k\pi\\x=b+k\pi\end{cases};k\in Z}\)
\(\sqrt{3}cot^2x-\left(1+\sqrt{3}\right)cotx+1=0\)
\(\orbr{\begin{cases}cotx=1\\cotx=\frac{\sqrt{3}}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}tanx=1=tan\frac{\pi}{4}\\tanx=\sqrt{3}=tan\frac{\pi}{3}\end{cases}}\)
\(\orbr{\begin{cases}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{3}+k\pi\end{cases};k\in Z}\)
Gọi O là tâm của hình bình hành ABCD; G = SO∩AM ⇒ G là trọng tâm ΔSAC ⇒ SG/SO = 2/3 ⇒ G cũng là trọng tâm ΔSBD
G ∈ AM ⊂ (P); G ∈ SO ⊂ (SBC) (1)
B' ∈ (P) và B' ∈ SB ⊂(SBC) (2)
D' ∈ (P) và D' ∈ SD ⊂(SBC) (3)
Từ (1); (2); (3) ⇒ G; B'; D' ∈ giao tuyến của (P) và (SBC)
Trong (SBC) vẽ BM//SO//DN (M, N ∈ B'D') ⇒ OG là đường trung bình của hình thang BDNM
⇒ BM + DN = 2OG = SG
Ta có :
x = SB/SB' = (SB' + BB')/SB' = 1 + BB'/SB' = 1 + BM/SG
y = SD/SD' = (SD' + DD')/SD' = 1 + DD'/SD' = 1 + DN/SG
⇒ x + y = 2 + (BM + DN)/SG = 2 + 1 = 3
1/x + 1/y = SB'/SB + SD'/SD = a/b
⇒ 3a/b = (x + y)(1/x + 1/y) ≥ 2√(xy).2√(1/xy) = 4
⇒ u = a/b ≥ 4/3 tối giản ⇒ GTNN của u = 4/3 xảy ra khi x = y ⇔ SB'SB' = SD/SD' ⇔ B'D'//BD