K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔABD và ΔACD có 

AB=AC
AD chung

BD=CD
Do đó:ΔABD=ΔACD

2: Ta có: ΔABC cân tại A

mà AD là đường trung tuyến

nên AD là đường cao

3: Xét ΔMEA vuông tại E và ΔMED vuông tại E có

ME chung

EA=ED

Do đó: ΔMEA=ΔMED

1: Xét ΔABM và ΔDBM có

BA=BD

BM chung

MA=MD

Do đó: ΔABM=ΔDBM

2: Xét ΔBAE và ΔBDE có 

BA=BD

\(\widehat{ABE}=\widehat{DBE}\)

BE chung

Do đó:ΔBAE=ΔBDE

Suy ra: \(\widehat{BAE}=\widehat{BDE}=90^0\)

hay DE⊥BC

3: Xét ΔAME và ΔDME có 

EA=ED

\(\widehat{AEM}=\widehat{DEM}\)

EM chung

Do đó: ΔAME=ΔDME

21 tháng 10 2016

Bài 2:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)

=> \(\frac{5a+3b}{5a-3b}=\frac{5kb+3b}{5kb-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(1\right)\)

\(\frac{5c+3d}{5c-3d}=\frac{5kd+3d}{5kd-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(2\right)\)

Từ (1) và (2) => \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)

21 tháng 10 2016

Bài 3:

Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)

=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=k^3\)

=> \(\frac{a}{d}=k^3\) (1)

Lại có: \(\frac{a+b+c}{b+c+d}=\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)

=> \(\left(\frac{a+b+c}{b+c+d}\right)^3=k^3\) (2)

Từ (1) và (2) => \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)

6 tháng 8 2016

đưa nó về dạng dãy tỉ = nhau mà làm

31 tháng 8 2016

' Bạn j đó ơi , mấy bài này dễ , chủ yếu bạn nên mở sách giáo khoa , cái chỗ mà bày vẽ hình ý . Chúc bạn thành công :v 

6 tháng 11 2016

sách tái bản mới à bạn

 

7 tháng 11 2016

đây là sách vien mà bạn

25 tháng 11 2016

B E D F C A 50 40 140 H

Kéo dài AB, AB và FC cắt nhau tại H

Vì AB vuông với AC nên BAC = 90 độ

Ta có: BAC + CAH = 180 độ( kề bù)

=> 90 + CAH = 180

=> CAH = 180 - 90

=> CAH = 90

Áp dụng tính chất tổng 3 góc của 1 tam giác ta có:

HAC + ACH + AHC = 180

=> 90 + 40 + AHC = 180

=> 130 + AHC = 180

=> AHC = 180 - 130

= 50

Suy ra góc AHC = EAB = 50 độ

mà 2 góc này ở vị trí so le trong

=> EB // FC → ĐPCM