Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
\(\Leftrightarrow\)\(x^2+y^2+z^2+3-2x-2y-2z\ge0\)
\(\Leftrightarrow\)\(\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)\ge0\)
\(\Leftrightarrow\)\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\)
Dáu "=" xảy ra \(\Leftrightarrow\) \(x=y=z=1\)
a,b,c,d > 0 ta có:
- a < b nên a.c < b.c
- c < d nên c.b < d.b
Áp dụng tính chất bắc cầu ta được: a.c < b.c < b.d hay a.c < b.d (đpcm)
3a) x2 (x-1) - 4x2 + 8x - 4
= x2(x-1) - ( 2x - 2)2
= (x\(\sqrt{x-1}\))2 -( 2x - 2)2
= (x\(\sqrt{x-1}\)- 2x+2) ( x\(\sqrt{x-1}\)+ 2x - 2)
3b) = x3 +33 + (x+3) (x-9)
= (x + 3)( x2 - 3x + 9) + (x+3)(x-9)
= (x+3)(x2 -2x) = (x + 3)(x - 2)x
b. Câu hỏi của gorosuke - Toán lớp 8 - Học toán với OnlineMath
tham khảo
https://olm.vn/hoi-dap/detail/6401290031.html
Gửi riêng
Ta có:
P=x3(z−y2)+y3(x−z2)+z3(y−x2)+xyz(xyz−1)P=x3(z−y2)+y3(x−z2)+z3(y−x2)+xyz(xyz−1)
=x3(z−y2)+xy3+yz3+x2y2z2−y3z2−z3x2−xyz=x3(z−y2)+xy3+yz3+x2y2z2−y3z2−z3x2−xyz
=x3(z−y2)+(xy3−xyz)+(yz3−y3z2)+(x2y2z2−z3x2)=x3(z−y2)+(xy3−xyz)+(yz3−y3z2)+(x2y2z2−z3x2)
=x3(z−y2)+xy(y2−z)+yz2(z−y2)+x2z2(y2−z)=x3(z−y2)+xy(y2−z)+yz2(z−y2)+x2z2(y2−z)
=(y2−z)(−x3+xy−yz2+x2z2)=(y2−z)(−x3+xy−yz2+x2z2)
=(y2−z)[x2(z2−x)−y(z2−x)]=(y2−z)[x2(z2−x)−y(z2−x)]
=(y2−z)(z2−x)(x2−y)=bca
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)