K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

Bài 8:

Cho các số thực a,b,c,x,y thỏa mãn ax−by=√3ax−by=3.

Tìm GTNN của F=a2+b2+x2+y2+bx+ayF=a2+b2+x2+y2+bx+ay

Lời giải:

Sử dụng giả thiết ax−by=√3ax−by=3 ta có:

(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3

Áp dụng bất đẳng thức CauchyCauchy , suy ra:

a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2√(a2+b2)(x2+y2)=2√(ax+by)2+3a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2(a2+b2)(x2+y2)=2(ax+by)2+3

Do đó, ta đưa về bài toán tìm GTNN của: 2√x2+3+x2x2+3+x trong đó x=ax+byx=ax+by

Ta có:

(2√x2+3+x)2=4(x2+3)+4x√x2+3+x2=(x2+3)+4x√x2+3+4x2+9=(√x2+3+2x)2+9≥9(2x2+3+x)2=4(x2+3)+4xx2+3+x2=(x2+3)+4xx2+3+4x2+9=(x2+3+2x)2+9≥9

⇒2√x2+3+x≥3⇒2x2+3+x≥3

Vậy MinT=3MinT=3

Bài 11:Cho các số a,b,c không âm không đồng thời bằng không. Chứng minh rằng;

∑2a2−bcb2−bc+c2≥3∑2a2−bcb2−bc+c2≥3

Không mất tính tổng quát, ta có thể giả sử bb là số nằm giữa aa và cc

BĐT đã cho tương đương với

∑2a2+(b−c)2b2−bc+c2≥6∑2a2+(b−c)2b2−bc+c2≥6

Áp dụng BĐT Cauchy-Schwarz, ta có

∑2a2b2−bc+c2≥2(a2+b2+c2)2∑a2(b2−bc+c2)=2(a2+b2+c2)22∑a2b2−abc∑a∑2a2b2−bc+c2≥2(a2+b2+c2)2∑a2(b2−bc+c2)=2(a2+b2+c2)22∑a2b2−abc∑a

∑(b−c)2b2−bc+c2≥[a(b−c)+b(a−c)+c(a−b)]22∑a2b2−abc∑a=4b2(a−c)22∑a2b2−abc∑a∑(b−c)2b2−bc+c2≥[a(b−c)+b(a−c)+c(a−b)]22∑a2b2−abc∑a=4b2(a−c)22∑a2b2−abc∑a

Do đó ta chỉ cần chứng minh

(a2+b2+c2)2+2b2(a−c)2≥6∑a2b2−3abc∑a(1)(a2+b2+c2)2+2b2(a−c)2≥6∑a2b2−3abc∑a(1)

Ta có 

b2(a−c)2=[a(b−c)+c(a−b)]2=a2(b−c)2+c2(a−b)2+2ac(a−b)(b−c)b2(a−c)2=[a(b−c)+c(a−b)]2=a2(b−c)2+c2(a−b)2+2ac(a−b)(b−c)

≥a2(b−c)2+c2(a−b)2≥a2(b−c)2+c2(a−b)2

Suy ra 

2b2(a−c)2≥a2(b−c)2+b2(c−a)2+c2(a−b)22b2(a−c)2≥a2(b−c)2+b2(c−a)2+c2(a−b)2

⇒VT(1)≥(∑a2)2+2∑a2b2−2abc∑a⇒VT(1)≥(∑a2)2+2∑a2b2−2abc∑a

Do đó ta chỉ còn phải chứng minh 

(∑a2)2+2∑a2b2−2abc∑a≥6∑a2b2−3abc∑a(∑a2)2+2∑a2b2−2abc∑a≥6∑a2b2−3abc∑a

⇔∑a4+abc∑a≥2∑a2b2⇔∑a4+abc∑a≥2∑a2b2

BĐT này hiển nhiên đúng theo BĐT Schur

∑a4+abc∑a≥∑ab(a2+b2)∑a4+abc∑a≥∑ab(a2+b2)

Và BĐT AM-GM

∑ab(a2+b2)≥2∑a2b2∑ab(a2+b2)≥2∑a2b2

Kết thúc chứng minh 

Đẳng thức xảy ra khi a=b=ca=b=c hoặc a=ba=b, c=0c=0 và các hoán vị.

26 tháng 10 2017

Bạn leminhduc tự hỏi tự trả lời à

7 tháng 1 2018
\(a,\dfrac{2x+2y}{a^2+2ab+b^2}.\dfrac{ax-ay+bx-by}{2x^2-2y^2}\)

\(=\dfrac{2\left(x+y\right)}{\left(a+b\right)^2}.\dfrac{a\left(x-y\right)+b\left(x-y\right)}{2\left(x^2-y^2\right)}\)

\(=\dfrac{2\left(x+y\right)}{\left(a+b\right)^2}.\dfrac{\left(x-y\right)\left(a+b\right)}{2\left(x-y\right)\left(x+y\right)}\)

\(=\dfrac{1}{a+b}\)


\(b,\dfrac{a+b-c}{a^2+2ab+b^2-c^2}.\dfrac{a^2+2ab+b^2+ac+bc}{a^2-b^2}\)

\(=\dfrac{a+b-c}{\left(a+b\right)^2-c^2}.\dfrac{\left(a+b\right)^2+c\left(a+b\right)}{\left(a-b\right)\left(a+b\right)}\)

\(=\dfrac{a+b-c}{\left(a+b-c\right)\left(a+b+c\right)}.\dfrac{\left(a+b\right)\left(a+b+c\right)}{\left(a-b\right)\left(a+b\right)}\)

\(=\dfrac{1}{a-b}\)

\(c,\dfrac{x^3+1}{x^2+2x+1}.\dfrac{x^2-1}{2x^2-2x+2}\)

\(=\dfrac{\left(x+1\right)\left(x^2-x+1\right)}{\left(x+1\right)^2}.\dfrac{\left(x-1\right)\left(x+1\right)}{2\left(x^2-x+1\right)}\) \(=\dfrac{x-1}{2}\) \(d,\dfrac{x^8-1}{x+1}.\dfrac{1}{\left(x^2+1\right)\left(x^4+1\right)}\) \(=\dfrac{\left(x^4\right)^2-1}{x+1}.\dfrac{1}{\left(x^2+1\right)\left(x^4+1\right)}\) \(=\dfrac{\left(x^4-1\right)\left(x^4+1\right)}{x+1}.\dfrac{1}{\left(x^2+1\right)\left(x^4+1\right)}\) \(=\dfrac{\left(x^2+1\right)\left(x^2-1\right)}{x+1}.\dfrac{1}{x^2+1}\) \(=\dfrac{\left(x-1\right)\left(x+1\right)}{x+1}\) \(=x-1\) \(e,\dfrac{x-y}{xy+y^2}-\dfrac{3x+y}{x^2-xy}.\dfrac{y-x}{x+y}\) \(=\dfrac{x-y}{y\left(x+y\right)}-\dfrac{3x+y}{x\left(x-y\right)}.\dfrac{-\left(x-y\right)}{x+y}\) \(=\dfrac{x-y}{y\left(x+y\right)}-\dfrac{3x+y}{x}.\dfrac{-1}{x+y}\) \(=\dfrac{x-y}{y\left(x+y\right)}-\dfrac{-3x-y}{x\left(x+y\right)}\) \(=\dfrac{x\left(x-y\right)+y\left(3x+y\right)}{xy\left(x+y\right)}\) \(=\dfrac{x^2-xy+3xy+y^2}{xy\left(x+y\right)}\) \(=\dfrac{x^2+2xy+y^2}{xy\left(x+y\right)}\) \(=\dfrac{\left(x+y\right)^2}{xy\left(x+y\right)}=\dfrac{x+y}{xy}\)
19 tháng 2 2018

tìm giá trị của m để pt 2x-m=1-x nhận giá trị x=-2 là nghiệm

giải hộ e với :)

14 tháng 8 2017

a^2 hay a.2 thế

14 tháng 8 2017

a^2 bn ạ!!
 

NV
22 tháng 2 2021

Đặt \(P=a^2+b^2+c^2+ab+bc+ca\)

\(P=\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{2}\left(a^2+b^2+c^2\right)\)

\(P\ge\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{6}\left(a+b+c\right)^2=6\)

Dấu "=" xảy ra khi \(a=b=c=1\)

25 tháng 8 2023

Cần gấp ko bạn

Nếu gấp thì sang web khác thử

29 tháng 6 2021

12632t54s jsd

Bài 1: (4,0 điểm). Cho biểu thức a) Rút gọn biểu thức P.b) Tìm x để .c) Tìm giá trị nguyên của x để P nhận giá trị là số nguyên.Bài 2: (4,5 điểm). a) Giải phương trình : .b) Phân tích đa thức sau thành nhân tử: (x + 2)(2x2 – 5x) - x3 - 8c) Cho x, y, z là các số khác 0 và đôi một khác nhau thỏa mãn: . Tính giá trị của biểu thức: .Bài 3: (4,0 điểm). a) Tìm tất cả các cặp số nguyên (x; y) thỏa...
Đọc tiếp

Bài 1: (4,0 điểm). Cho biểu thức
a) Rút gọn biểu thức P.
b) Tìm x để .
c) Tìm giá trị nguyên của x để P nhận giá trị là số nguyên.
Bài 2: (4,5 điểm). 
a) Giải phương trình : .
b) Phân tích đa thức sau thành nhân tử: (x + 2)(2x2 – 5x) - x3 - 8
c) Cho x, y, z là các số khác 0 và đôi một khác nhau thỏa mãn: . Tính giá trị của biểu thức: .
Bài 3: (4,0 điểm). 
a) Tìm tất cả các cặp số nguyên (x; y) thỏa mãn: y(x – 1) = x2 + 2
b) Chứng minh rằng nếu các số nguyên a, b, c thỏa mãn b2 – 4ac và b2 + 4ac đồng thời là các số chính phương thì abc 30. 
Bài 4: (6,0 điểm). 
1) Cho tam giác ABC vuông tại A. Lấy một điểm M bất kỳ trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E, EM cắt BC tại I.
a) Chứng minh EA.EB = ED.EC.
b) Chứng minh .
c) Chứng minh BM.BD + CM.CA = BC2.
d) Vẽ đường thẳng vuông góc với AB tại B, đường thẳng vuông góc với CD tại C, chúng cắt nhau tại K. Chứng minh MK luôn đi qua một điểm cố định khi M thay đổi.
e) Đặt BC = a; EC = b; BE = c; AD = a’; AI = b’; DI = c’.
Chứng minh .
2) Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất 
Bài 5: (1,5 điểm). Cho a, b, c > 0 thỏa mãn: a2 + b2 + c2 = 1. Chứng minh rằng 

(1)/(1-ab)+(1)/(1-bc)+(1)/(1-ca)<=9/2

 

3
8 tháng 4 2016

Bạn tự giải luôn đi!

8 tháng 4 2016

dài quá, ko muốn giải

25 tháng 7 2021

Bài 2 : 

\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

<=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = 3ab + 3bc + 3ca 

<=> a^2 + b^2 + c^2 = ab + bc + ca 

<=> 2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca 

<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 = 0 

<=> a = b = c 

NV
25 tháng 7 2021

1.

\(\Leftrightarrow2a^2+2b^2+18=2ab+6a+6b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-6a+9\right)+\left(b^2-6b+9\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-3\right)^2+\left(b-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-3=0\\b-3=0\end{matrix}\right.\) \(\Leftrightarrow a=b=3\)

2.

\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)