K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2018

Bạn cần để làm chi

18 tháng 1 2018

a, Nhóm (x+2)(x+5) và (x+3)(x+4) ta được 
A  = \(\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

- Đặt \(x^2+7x+11=a\)=> \(A=\left(x-1\right)\left(x+1\right)-24\)

                                                             \(=a^2-1-24\)

                                                              \(=\left(a-5\right)\left(a+5\right)\)

                                                               \(=\left(x^2-7x+6\right)\left(x^2-7x+16\right)\)

                                                                \(=\left(x-6\right)\left(x-1\right)\left(x^2-7x+16\right)\)

Nick sv2 td 500tr sm ko đệ lấy ko

a. (x+2)(x+5)(x+3)(x+4)-24=(x^2+7x+10)(x^2+7x+12)-24

Đặt x^2+7x+10=a ta có:

a(a+2)-24=a^2+2a+1-25=(a+1)^2-25=(a+1+5)(a+1-5)=(a+6)(a-4)=(x^2+7x+10+6)(x^2+7x+10-4)=(x^2+7x+16)(x^2+7x+6)

18 tháng 1 2018

Từ gt

\(\Leftrightarrow\)(x+2)(x+5)(x+4)(x+3) - 24 =(x\(^2\)+ 7x+10)(x\(^2\)+7x+12)-24

Đặt x\(^2\)+ 7x+11=a

\(\Leftrightarrow\)(a-1)(a+1) -24

\(\Leftrightarrow\)a\(^2\)-1-24\(\Leftrightarrow\)a\(^{^2}\)-25\(\Leftrightarrow\)(a-5)(a+5) Thay a= x\(^2\)+7x+11 \(\Rightarrow\)kq

3 tháng 9 2018

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt    \(t=x^2+7x+11\)

đến đây biến đổi theo t rồi thay trở lại

3 tháng 9 2018

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt    \(t=x^2+7x+11\)

đến đây biến đổi theo t rồi thay trở lại

23 tháng 1 2018
spam à ? có 10 ních ngọc rồng này muốn lấy ních nào ?
23 tháng 1 2018

để làm chi
 

24 tháng 1 2018

mình có nick nè nhưng sm có 3 tỉ 3 ak

24 tháng 1 2018

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt   \(x^2+7x+10=a\)ta có:

                \(a\left(a+2\right)-24\)

          \(=a^2+2a+1-25\)

          \(=\left(a+1\right)^2-25\)

          \(=\left(a-4\right)\left(a+6\right)\)

Thay trở lại ta được:     \(\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

24 tháng 1 2018

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt   \(x^2+7x+10=a\)     ta có:

                \(a\left(a+2\right)-24\)

          \(=a^2+2a+1-25\)

          \(=\left(a+1\right)^2-25\)

          \(=\left(a-4\right)\left(a+6\right)\)

Thay trở lại ta được:     \(\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

3 tháng 9 2018

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt    \(t=x^2+7x+11\)

đến đây biến đổi theo t rồi thay trở lại

23 tháng 1 2018

chỉ co sv 1 thôi

3 tháng 9 2018

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt    \(t=x^2+7x+11\)

đến đây biến đổi theo t rồi thay trở lại

17 tháng 1 2018

a,b,c thỏa mãn cái j vậy  

17 tháng 1 2018

\(\left(x^4+6x^3\right)+\left(7x^3+42x^2\right)+\left(16x^2+96x\right)+\left(x^3+6x^2\right)+\left(7x^2+42x\right)+\left(16x+96\right)\)

\(x^3\left(x+6\right)+7x^2\left(x+6\right)+16x\left(x+6\right)+x^2\left(x+6\right)+7x\left(x+6\right)+16\left(x+6\right)\)

dến đây bạn tự làm ok