Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng BĐT Cauchy-Schwarz dạng Engel:
\(VT=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)
Đẳng thức xảy ra khi a =b = c
b)Tương tự câu a
c)\(\sqrt{\frac{a}{b+c+d}}=\frac{a}{\sqrt{a\left(b+c+d\right)}}\ge\frac{2a}{a+b+c+d}\)
Tương tự 3 BĐT còn lại và cộng theo vế ta được \(VT\ge2\)
Nhưng dấu "=" không xảy ra nên ta có đpcm.
d) Chưa nghĩ ra.
Bài 2:
a) Đề thiếu (or sai hay sao ý)
d, Với a,b >0.Áp dụng bđt svac-xơ có:
\(\frac{3}{a}+\frac{1}{b}=\frac{3}{a}+\frac{2}{2b}\ge\frac{\left(\sqrt{3}+\sqrt{2}\right)^2}{a+2b}=\frac{5+2\sqrt{6}}{a+2b}>\frac{\sqrt{24}+2\sqrt{6}}{a+2b}\)
=> \(\frac{3}{a}+\frac{1}{b}>\frac{4\sqrt{6}}{a+2b}\)
1. BĐT ban đầu
<=> \(\left(\frac{1}{3}-\frac{b}{a+3b}\right)+\left(\frac{1}{3}-\frac{c}{b+3c}\right)+\left(\frac{1}{3}-\frac{a}{c+3a}\right)\ge\frac{1}{4}\)
<=>\(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)
<=> \(\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ac}\ge\frac{3}{4}\)
Áp dụng BĐT buniacoxki dang phân thức
=> BĐT cần CM
<=> \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ac\right)}\ge\frac{3}{4}\)
<=> \(a^2+b^2+c^2\ge ab+bc+ac\)luôn đúng
=> BĐT được CM
2) \(a+b+c\le ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)\(\Leftrightarrow\)\(\left(a+b+c\right)^2-3\left(a+b+c\right)\ge0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a+b+c-3\right)\ge0\)\(\Leftrightarrow\)\(a+b+c\ge3\)
ko mất tính tổng quát giả sử \(a\ge b\ge c\)
Có: \(3\le a+b+c\le ab+bc+ca\le3a^2\)\(\Leftrightarrow\)\(3a^2\ge3\)\(\Leftrightarrow\)\(a\ge1\)
=> \(\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a}\le\frac{3}{1+2a}\le1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)
Bài 2:
\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}+\frac{1}{d+1}=3\Leftrightarrow\frac{1}{a+1}=1-\frac{1}{b+1}+1-\frac{1}{c+1}+1-\frac{1}{d+1}\)
\(\Leftrightarrow\frac{1}{a+1}=\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\ge3\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}}>0\)
Tương tự:
\(\frac{1}{b+1}\ge3\sqrt[3]{\frac{cda}{\left(c+1\right)\left(d+1\right)\left(a+1\right)}}>0\);\(\frac{1}{c+1}\ge3\sqrt[3]{\frac{dab}{\left(d+1\right)\left(a+1\right)\left(b+1\right)}}>0\);
\(\frac{1}{d+1}\ge3\sqrt[3]{\frac{abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}>0\)
\(\Rightarrow\frac{1}{a+1}.\frac{1}{b+1}.\frac{1}{c+1}.\frac{1}{d+1}\ge3^4\sqrt[3]{\frac{\left(abcd\right)^3}{\left[\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)\right]^3}}\)
\(\Leftrightarrow\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\ge81\frac{abcd}{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\)
\(\Leftrightarrow abcd\le\frac{1}{81}\)
Dấu "="xảy ra khi \(a=b=c=d?\). Không chắc lắm.
Sửa một chút:
Bài 2: Thay dấu "=" bởi lớn hơn hoặc bằng, không có gì cả (nãy nhìn nhầm)
\(\Leftrightarrow\frac{1}{a+1}\ge1-\frac{1}{b+1}+1-\frac{1}{c+1}+1-\frac{1}{d+1}=\frac{b}{b+1}+\frac{c}{c+1}+\frac{d}{d+1}\)
\(\ge3\sqrt[3]{\frac{bcd}{\left(b+1\right)\left(c+1\right)\left(d+1\right)}}>0\left(AM-GM\right)\)
1) Áp dụng Cô-si ta có:
\(x^2+y^2\ge2xy\)
\(y^2+z^2\ge2yz\)
\(x^2+z^2\ge2xz\)
\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)
\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\left(đpcm\right)\)