Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Mafia - Toán lớp 9 - Học toán với OnlineMath
Em có thể tham khảo tại đây nhé.
1. Để chứng minh cung DE có số đo không đổi, ta cần chứng minh góc \(\angle BOC\) có số đo không đổi. Thực vậy, theo tính chất hai tiếp tuyến cắt nhau, OB và OC là phân giác ngoài của tam giác ABC. Ta có
\(\angle BOC=180^{\circ}-\frac{\angle MBC}{2}-\frac{\angle NCB}{2}=\frac{\angle ABC}{2}+\frac{\angle ACB}{2}=90^{\circ}-\frac{\angle BAC}{2}=90^{\circ}-\frac{a}{2}\)
Do đó góc \(\angle BOC\) có số đo không đổi. Suy ra cung DE có số đo không đổi.
2. Do CD vuông góc với AB nên BC,BD là đường kính của hai đường tròn (O) và (O'). Suy ra
\(\angle CFB=\angle DEB=90^{\circ}\to\angle CFD=\angle CED=90^{\circ}.\) Vậy tứ giác CDEF nội tiếp. Do đó \(\angle ECF=\angle EDF\to\angle FAB=\angle ECF=\angle EDF=\angle EDB\)
Vậy AB là phân giác của góc AEF.
3. Đề bài có chút nhầm lẫn, "kẻ \(IH\perp BC\) mới đúng. Do tam giác ABC nhọn và I nằm trong nên các điểm H,K,L nằm trên các cạnh của tam giác. Sử dụng bất đẳng thức \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2,\) ta suy ra \(AL^2+BL^2\ge\frac{1}{2}\left(AL+BL\right)^2=\frac{1}{2}AB^2.\) Tương tự ta cũng có \(BH^2+CH^2\ge\frac{1}{2}BC^2,KC^2+KA^2\ge\frac{1}{2}AC^2.\) Mặt khác theo định lý Pitago
\(AL^2+BH^2+CK^2=\left(IA^2-IL^2\right)+\left(IB^2-IH^2\right)+\left(IC^2-IK^2\right)\)
\(=\left(IA^2-IK^2\right)+\left(IB^2-IL^2\right)+\left(IC^2-IH^2\right)\)
\(=BL^2+CH^2+AK^2.\)
Thành thử \(AL^2+BH^2+CK^2=\frac{\left(AL^2+BL^2\right)+\left(BH^2+CH^2\right)+\left(CK^2+AK^2\right)}{2}\ge\frac{AB^2+BC^2+CA^2}{2}.\)
Dấu bằng xảy ra khi \(AL=BL,BH=CH,CK=AK\Leftrightarrow I\) là giao điểm ba đường trung trực.
a) Cm: tam giác ABD vuông
Xét tam giác ABD có:
* D thuộc (O)(gt)
* AB là đường kính đường tròn tâm O
=> tam giác ABD nội tiếp đường tròn tâm O, đường kính AB
=> tam giác ABD vuông tại D
b) Cm: ME là tiếp tuyến đường tròn tâm O
Ta có: OM là đường trung tuyến (tính chất đường kính cắt 1 dây)
OM là đường cao (DE vuông góc AB <=> OM)
=> OM là đường trung trực của DE
=> O, M cách đều D, E
=> DM = DE
Xét tam giác ODM và tam giác OEM có:
* OD = OE (=R)
* DM = DE (cmt)
* OM là cạnh chung
=> tam giác ODM = tam giác OEM (c-c-c)
=> góc ODM = góc OEM (tương ứng)
Mà góc ODM = 90 độ (DM là tiếp tuyến)
=> góc OEM = 90 độ
=> OE vuông góc ME
=> ME là tiếp tuyến đường tròn tâm O
c) Cm: MA.MB = MI.MO
Xét tam giác DMO vuông tại D (DM là tiếp tuyến) có đường cao DI (DE vuông góc AB tại I) :
* \(MI.MO=MD^2\)( hệ thức lượng) (1)
Xét tam giác AOD có:
* OD = OA (=R)
=> tam giác AOD cân tại O
=> góc ODA = góc OAD
Ta có: góc MDA + góc ODA = 90 độ (DM là tiếp tuyến)
góc MBD + góc OAD = 90 độ ( tam giác ABD vuông tại D)
Mà góc ODA = góc OAD (cmt)
=> góc MDA = góc MBD
Xét tam giác MAD và tam giác MDB có:
* góc DMB chung
* góc MDA = góc MBD (cmt)
=> tam giác MAD đồng dạng tam giác MDB (g-g)
=>\(\frac{MA}{MD}=\frac{MD}{MB}\)
=> \(MA.MB=MD^2\)(2)
Từ (1) và (2) => MA.MB = MI.MO