\(\frac{x}{y}\)=\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2017

Bài 2: Cho x/y=y/z=z/x

+ Trường hợp 1: x/y=y/z=z/x=0

=> x = y= z = 0

=> z^576  =0

=> Không thoả mãn phân số

+ Trường hợp 2: x;y;z khác 0

Áp dụng tính chất của dãy tỉ số bằng nhau có:

x/y = y/z = z/x = (x+y+z)/(y+z+x) = 1

=> x = y = z

=> x^123 . y^456 = z^579

=> Phân số có giá trị = 1

k cho tớ nha!!!

23 tháng 1 2017

Bài 1 bạn sửa lại dấu ngoặc được không? Tớ không hiểu. @+@

5 tháng 4 2016

Theo t/c dãy tỉ số=nhau:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

=>x=y=z

Ta có: \(\frac{x^{123}.y^{456}}{z^{579}}=\frac{z^{123}.z^{456}}{z^{579}}=\frac{z^{579}}{z^{579}}=1\)

4 tháng 8 2016

Theo tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{y}\)=\(\frac{y}{z}\)=\(\frac{z}{x}\)=\(\frac{x+y+z}{x+y+z}\)= 1

=> N = x^( 123 + 456) = x^579

=> N = x^579 / 2^579

11 tháng 3 2016

Theo t/c dãy tỉ số=nhau;

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\) (x+y+z \(\ne\) 0)

=>x=y=z

Ta có: \(\frac{x^{123}.y^{456}}{z^{579}}=\frac{z^{123}.z^{456}}{z^{579}}=\frac{z^{579}}{z^{579}}=1\)

Vậy....

NM
8 tháng 1 2021

áp dụng tính chất của dãy tỉ số bằng nhau ta có 

 \(\frac{7z-4y}{5}\) =\(\frac{4x-5z}{7}\) =\(\frac{5\left(7z-4y\right)+7\left(4x-5z\right)}{5^2+7^2}=\frac{4\left(7x-5y\right)}{74}=\frac{5y-7x}{4}\)

suy ra \(5y-7x=7z-4y=4x-5z=0\Leftrightarrow\frac{x}{5}=\frac{y}{7}=\frac{z}{4}=k\)

hay \(\hept{\begin{cases}x=5k\\y=7k\\z=4k\end{cases}\Rightarrow\text{​​}}\)\(\frac{\left(x+3y-4z\right)^2}{x\cdot y-y\cdot z+z\cdot x}=\frac{\left(5k+21k-16k\right)^2}{5k.7k-7k.4k+5k.4k}=\frac{100}{27}\)

25 tháng 10 2019

Hình như

25 tháng 10 2019

Ap dụng tính chất tỉ lệ thức ta có

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

Nên ta có

\(1+\frac{x}{y}=\left(1+\frac{y+z-x}{y}\right)=\frac{2z}{y}\)

\(1+\frac{y}{z}=1+\frac{y}{z}=\frac{2x}{z}\)

\(1+\frac{z}{x}=\frac{2y}{x}\)

Chỗ này mình làm hơi tắt nên tự hiệu nhé

\(\Rightarrow\frac{2z}{y}\cdot\frac{2y}{x}\cdot\frac{2x}{z}=\frac{8xyz}{xyz}=8\)

10 tháng 10 2019

Vì x,y,z khác 0 nên ta áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

\(\Rightarrow\hept{\begin{cases}x=y\\y=z\\x=z\end{cases}}\Leftrightarrow x=y=z\)

Đặt \(x=y=z=a\)

\(A=\frac{2013a^2+a^2+a^2}{a^2+2013a^2+a^2}=\frac{2015a^2}{2015a^2}=1\)