Cho tam giác ABC đều có đường cao AH=h. M là điểm nằm trong tam giác ABC, vẽ MD...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2016

giải câu c, d đi

27 tháng 4 2020

?????

23 tháng 3 2019

B C A M D F E

a) Ta có: \(S_{\Delta ABC}=S_{\Delta MBC}+S_{\Delta MCA}+S_{\Delta MAB}\)

\(\Rightarrow S_{\Delta ABC}=\frac{1}{2}MD.BC+\frac{1}{2}ME.AC+\frac{1}{2}MF.AB\)

\(\Rightarrow S_{\Delta ABC}=\frac{1}{2}ax+\frac{1}{2}by+\frac{1}{2}cz\)

\(\Rightarrow S_{\Delta ABC}=\frac{1}{2}\left(ax+by+cz\right)\)

\(\Rightarrow S=\frac{1}{2}\left(ax+by+cz\right)\)

\(\Rightarrow2S=ax+by+cz\)

=> đpcm

b) Ta có: \(\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\left(ax+by+cz\right)=\left(a^2+b^2+c^2\right)+\left(\frac{a}{x}.by+\frac{b}{y}.ax\right)\) \(+\left(by.\frac{c}{z}+cz.\frac{b}{y}\right)+\left(cz.\frac{a}{x}+ax.\frac{c}{z}\right)\)

\(=\left(a^2+b^2+c^2\right)+ab\left(\frac{y}{x}+\frac{x}{y}\right)+bc\left(\frac{y}{z}+\frac{z}{y}\right)+ca\left(\frac{z}{x}+\frac{x}{z}\right)\)

\(\ge a^2+b^2+c^2+2ab+2by+2ca=\left(a+b+c\right)^2\) 

(vì ta dễ chứng minh được \(\frac{x}{y}+\frac{y}{x}\ge2\) - tương tự với \(\frac{y}{z}+\frac{z}{y};\frac{z}{x}+\frac{x}{z}\))

Vậy \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\ge\frac{\left(a+b+c\right)^2}{\left(ax+by+cz\right)}=\frac{\left(a+b+c\right)^2}{2S}\)

Dấu "=" xảy ra <=> x = y = z

Vậy \(min\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)=\frac{\left(a+b+c\right)^2}{2S}\) 

3 tháng 5 2018

b. Do tứ giác MDBE nội tiếp (cmt) => \(\widehat{MBE}=\widehat{MBC}=\widehat{MDE}=\frac{1}{2}sđ\widebat{MC}\)(1)

Vì MD \(\perp\)AB tại D (gt) => \(\widehat{MDA}=90^o\)

MF \(\perp\)AC tại F (gt) => \(\widehat{MFA}=90^o\)

Xét tứ giác ADMF có: \(\widehat{MDA}+\widehat{MFA}=90^o+90^o=180^o\)=> tứ giác ADMF nội tiếp (dhnb)

=> \(\widehat{MDF}=\widehat{MAF}=\widehat{MAC}=\frac{1}{2}sđ\widebat{MC}\)(2)

Từ (1) và (2) => \(\widehat{MDE}=\widehat{MDF}\)=> D, E, F thẳng hàng (2 góc có cùng số đo, có 1 cạnh chung, 2 cạnh còn lại của 2 góc cùng nằm về 1 phía so với cạnh chung thì 2 cạnh còn lại trùng nhau)

* Ta có: tứ giác MEFC nội tiếp (cmt) => \(\widehat{EFM}=\widehat{ECM}=\frac{1}{2}sđ\widebat{EM}\)\(\Leftrightarrow\widehat{DFM}=\widehat{BCM}\)(3)

tứ giác MDBE nội tiếp (cmt) => \(\widehat{MDE}=\widehat{MBE}=\frac{1}{2}sđ\widebat{ME}\)\(\Leftrightarrow\widehat{MDF}=\widehat{MBC}\)(4)

Từ (3) và (4) => \(\Delta MDF\)đồng dạng với \(\Delta MBC\)(g.g) => \(\frac{MD}{MB}=\frac{MF}{MC}\Leftrightarrow MB\times MF=MD\times MC\)(đpcm)

c. Nối A với M, B với M 

Ta có: \(\widehat{AMB}=\widehat{ACB}=\frac{1}{2}sđ\widebat{AB}\)(5)

Do tứ giác MEFC nội tiếp => \(\widehat{FME}=\widehat{FCE}=\frac{1}{2}sđ\widebat{EF}=\widehat{ACB}=\frac{1}{2}sđ\widebat{AB}\)(6)

Từ (5) và (6) => \(\widehat{AMB}=\widehat{FME}\)(7)

lại có: tứ giác ADMF nội tiếp (cmt) => \(\widehat{MAD}=\widehat{MFD}=\frac{1}{2}sđ\widebat{MD}\Leftrightarrow\widehat{MAB}=\widehat{MFE}\)(8)

từ (7) và (8) => \(\Delta ABM\)đồng dạng với \(\Delta FEM\)(g.g) => \(\frac{AB}{FE}=\frac{AM}{FM}\Leftrightarrow\frac{AB}{AM}=\frac{FE}{FM}\Leftrightarrow\frac{2\times AI}{AM}=\frac{2\times FK}{FM}\Leftrightarrow\frac{AI}{AM}=\frac{FK}{FM}\)(9)

Lại có: \(\widehat{MAD}=\widehat{MFD}\)(CMT) => \(\widehat{MAI}=\widehat{MFK}\)(10)

Từ (9) và (10) => \(\Delta MAI\)đồng dạng với \(\Delta MFK\)(c.g.c) => \(\widehat{IMA}=\widehat{KMF}\)(11)

Ta có: \(\widehat{MID}\)là góc ngoài tại đỉnh I của \(\Delta MAI\)=> \(\widehat{MID}=\widehat{MAI}+\widehat{IMA}\)

Tương tự: \(\widehat{MKD}\)là góc ngoài tại đỉnh K của \(\Delta MFK\)=> \(\widehat{MKD}=\widehat{MFK}+\widehat{KMF}\)

Từ (10) và (11) => \(\widehat{MID}=\widehat{MKD}\)=> Tứ giác MDIK là tứ giác nội tiếp (DHNB) => \(\widehat{IDM}+\widehat{IKM}=180^o\)(Hệ quả)

Mà \(\widehat{IDM}=\widehat{ADM}=90^o\)=> \(\widehat{IKM}=90^o\)<=> MK vuông góc với KI (ĐPCM)