K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2024

Tính giá trị biểu thức:

A = (3^1/3 + 3^2/3 + 3^3/3 + 3^4/3) . 3^5 + (3^5/3 + 3^6/3 + 3^7/3 + 3^8/3) . 3^9 + ... + (3^97/3 + 3^98/3 + 3^99/3 + 3^100/3) . 3^101

Bước 1: Nhóm các hạng tử:

Ta có thể nhóm các hạng tử trong biểu thức thành các nhóm có dạng:

(3^(n-1)/3 + 3^n/3 + 3^(n+1)/3 + 3^(n+2)/3) . 3^(n+4)

Với n = 1, 5, 9, ..., 97.

Bước 2: Tính giá trị từng nhóm:

Xét nhóm thứ nhất:

(3^0/3 + 3^1/3 + 3^2/3 + 3^3/3) . 3^5

= (1 + 3 + 3^2 + 3^3) . (3^4 . 3)

= (1 + 3 + 3^2 + 3^3) . 81

= 80 . 81

= 6480

Tương tự, ta có thể tính giá trị các nhóm tiếp theo:

Giá trị nhóm thứ hai: 6480 . 3^4

Giá trị nhóm thứ ba: 6480 . 3^8

...

Giá trị nhóm thứ 25: 6480 . 3^96

Bước 3: Cộng các giá trị từng nhóm:

Giá trị của biểu thức là tổng giá trị của các nhóm:

6480 + 6480 . 3^4 + 6480 . 3^8 + ... + 6480 . 3^96

= 6480 (1 + 3^4 + 3^8 + ... + 3^96)

Bước 4: Tính tổng 1 + 3^4 + 3^8 + ... + 3^96:

Đây là một cấp số nhân với số hạng đầu tiên là 1, công bội là 3^4 và có 25 số hạng.

Tổng của cấp số nhân này là:

(1 - (3^4)^25) / (1 - 3^4) = (1 - 3^100) / (1 - 81) = (1 - 3^100) / -80

Bước 5: Thay giá trị và kết luận:

Thay giá trị tổng vào biểu thức, ta được:

6480 (1 + 3^4 + 3^8 + ... + 3^96) = 6480 . (1 - 3^100) / -80

= -81(1 - 3^100)

Vậy, giá trị của biểu thức là -81(1 - 3^100).

Kết quả:

-81(1 - 3^100)

Lưu ý:

  • Việc sử dụng công thức khai triển tổng cấp số nhân giúp đơn giản hóa việc tính giá trị các nhóm.
  • Cần chú ý đến số hạng đầu tiên, công bội và số hạng của cấp số nhân khi áp dụng công thức.

Chúc bạn thành công!

13 tháng 11 2016

help me

25 tháng 4 2017

sao nhiều dữ vậy

25 tháng 3 2024

Tính toán giá trị biểu thức:

Bước 1: Phân tích biểu thức:

Ta có thể nhóm các hạng tử trong biểu thức thành các nhóm có dạng:

(3^(n-1)/3 + 3^n/3 + 3^(n+1)/3 + 3^(n+2)/3) . 3^(n+4)

Với n = 1, 5, 9, ..., 97.

Bước 2: Tính giá trị từng nhóm:

Xét nhóm thứ nhất:

(3^0/3 + 3^1/3 + 3^2/3 + 3^3/3) . 3^5

= (1 + 3 + 3^2 + 3^3) . (3^4 . 3)

= (1 + 3 + 3^2 + 3^3) . 81

Ta có thể sử dụng công thức khai triển tổng của cấp số nhân để tính giá trị trong ngoặc:

1 + 3 + 3^2 + 3^3 = (1 - 3^4) / (1 - 3) = 80

Do đó, giá trị của nhóm thứ nhất là:

(80) . 81 = 6480

Tương tự, ta có thể tính giá trị các nhóm tiếp theo:

Giá trị nhóm thứ hai: (80) . 3^4 . 81 = 6480 . 3^4

Giá trị nhóm thứ ba: (80) . 3^8 . 81 = 6480 . 3^8

...

Giá trị nhóm thứ 25: (80) . 3^96 . 81 = 6480 . 3^96

Bước 3: Cộng các giá trị từng nhóm:

Giá trị của biểu thức là tổng giá trị của các nhóm:

6480 + 6480 . 3^4 + 6480 . 3^8 + ... + 6480 . 3^96

= 6480 (1 + 3^4 + 3^8 + ... + 3^96)

Bước 4: Tính tổng 1 + 3^4 + 3^8 + ... + 3^96:

Đây là một cấp số nhân với số hạng đầu tiên là 1, công bội là 3^4 và có 25 số hạng.

Tổng của cấp số nhân này là:

(1 - (3^4)^25) / (1 - 3^4) = (1 - 3^100) / (1 - 81) = (1 - 3^100) / -80

Bước 5: Thay giá trị và kết luận:

Thay giá trị tổng vào biểu thức, ta được:

6480 (1 + 3^4 + 3^8 + ... + 3^96) = 6480 . (1 - 3^100) / -80

= -81(1 - 3^100)

Vậy, giá trị của biểu thức là -81(1 - 3^100).

Lưu ý:

  • Việc sử dụng công thức khai triển tổng cấp số nhân giúp đơn giản hóa việc tính giá trị các nhóm.
  • Cần chú ý đến số hạng đầu tiên, công bội và số hạng của cấp số nhân khi áp dụng công thức.

Kết quả:

Giá trị của biểu thức là -81(1 - 3^100).

Chúc bạn thành công!

1 tháng 8 2018

a. \(\frac{20^5.5^{10}}{100^5}\)

\(=\frac{20^5.\left(5^2\right)^5}{100^5}\)

\(=\frac{20^5.25^5}{100^5}\)

\(=\frac{500^5}{100^5}\)

\(=\left(\frac{500}{100}\right)^5\)

\(=5^5=3125\)

b. \(\frac{\left(0,9\right)^5}{\left(0,3\right)^6}\)

\(=\frac{\left(0,9\right)^5}{\left(0,3\right)^5.0,3}\)

\(=\left(\frac{0,9}{0,3}\right)^5.\frac{1}{0,3}\)

\(=3^5.\frac{1}{0,3}\)

\(=810\)

c. \(\frac{6^3+3.6^2+3^3}{-13}\)

\(=\frac{\left(3.2\right)^3+3.\left(3.2\right)^2+3^3}{-13}\)

\(=\frac{3^3\left(2^3+2^2+1\right)}{-13}\)

\(=\frac{3^3.13}{-13}\)

\(=\left(-3\right)^3\)

\(=-27\)

11 tháng 10 2018

Do \(\left|a\right|\ge0\) nên:

a) \(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\ge0\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}\right)=101x\) (100 số hạng x)

\(\Leftrightarrow100x+5050=101x\Leftrightarrow201x=5050\Leftrightarrow x=\frac{5050}{201}\)

b) Đề sai nhé!

11 tháng 10 2018

Chết,nhầm ở câu cuối cùng của câu a) . Mình là ẩu thật :v. Sửa lại nhé:

\(\Leftrightarrow100x+\frac{5050}{101}=101x\Leftrightarrow100x+50=101x\Leftrightarrow201x=50\Leftrightarrow x=\frac{50}{201}\)

...
Đọc tiếp

\(\left(\frac{-5}{12}+\frac{7}{4}-\frac{3}{8}\right)-\left[4\frac{1}{2}-7\frac{1}{3}\right]-\left(\frac{1}{4}-\frac{5}{2}\right)\)

\(\left[2\frac{1}{4}-5\frac{3}{2}\right]-\left(\frac{3}{10}-1\right)-5\frac{1}{2}+\left(\frac{1}{3}-\frac{5}{6}\right)\)

\(\frac{4}{7}-\left(3\frac{2}{5}-1\frac{1}{2}\right)-\frac{5}{21}+\left[3\frac{1}{2}-4\frac{2}{3}\right]\)

\(\frac{1}{8}-1\frac{3}{4}+\left(\frac{7}{8}-3\frac{7}{2}+\frac{3}{4}\right)-\left[\frac{7}{4}-\frac{5}{8}\right]\)

\(\left(\frac{3}{5}-2\frac{1}{10}+\frac{11}{20}\right)-\left[\frac{-3}{4}+1\frac{7}{2}\right]\)

\(\left[-2\frac{1}{5}-2\frac{2}{3}\right]-\left(\frac{1}{15}-5\frac{1}{2}\right)+\left[\frac{-1}{6}+\frac{1}{3}\right]\)

\(1\frac{1}{8}-\left(\frac{1}{15}-\frac{1}{2}+\frac{-1}{6}\right)+\left[\frac{5}{4}+\frac{3}{2}\right]\)

\(\frac{5}{6}-\left(1\frac{1}{3}-1\frac{1}{2}\right)+\left[\frac{5}{12}-\frac{3}{4}-\frac{1}{6}\right]\)

\(1\frac{1}{4}-\left(\frac{7}{12}-\frac{2}{3}-1\frac{3}{8}\right)+\left[\frac{5}{24}-2\frac{1}{2}\right]-\frac{1}{6}-\left[\frac{-3}{4}\right]\)

\(-2\frac{1}{5}+2\frac{3}{10}-\left(\frac{6}{20}-\left[\frac{2}{8}-1\frac{1}{2}\right]\right)+\left[\frac{7}{20}-1\frac{1}{4}\right]\)

\(-\left[1\frac{2}{3}-3\frac{1}{2}+\frac{1}{4}\right]+\left(\frac{2}{6}-\frac{5}{12}\right)-\left(\frac{1}{3}-\left[\frac{1}{4}-\frac{1}{3}\right]\right)\)

\(-\frac{4}{5}-\left(1\frac{1}{10}-\frac{7}{10}\right)+\left[\frac{3}{4}-1\frac{1}{5}\right]+1\frac{1}{2}\)

\(\frac{3}{21}-\frac{5}{14}+\left[1\frac{1}{3}-5\frac{1}{2}+\frac{5}{14}\right]-\left(\frac{1}{6}-\frac{3}{7}+\frac{1}{3}\right)\)

\(-1\frac{2}{5}+\left[1\frac{3}{10}-\frac{7}{20}-1\frac{1}{4}\right]-\left(\frac{1}{5}-\left[\frac{3}{4}-1\frac{1}{2}\right]\right)\)

\(2\frac{1}{3}-\left(\frac{1}{2}-2\frac{1}{6}+\frac{3}{4}\right)+\left[\frac{5}{12}-1\frac{1}{3}\right]-\frac{7}{8}+3\frac{1}{2}\)

\(2\frac{1}{4}-1\frac{3}{5}-\left(\frac{9}{20}-\frac{7}{10}\right)+\left[1\frac{3}{5}-2\frac{1}{2}\right]+\frac{3}{4}\)

\(\left[\frac{8}{3}-5\frac{1}{4}+\frac{1}{6}\right]-\frac{7}{4}+\frac{-5}{12}-\left(1-1\frac{1}{2}+\frac{1}{3}\right)\)

\(\left(\frac{1}{4}-\left[1\frac{1}{4}-\frac{7}{10}\right]+\frac{1}{2}\right)-2\frac{1}{5}-1\frac{3}{10}+\left[1-\frac{1}{2}\right]\)

TRÌNH BÀY GIÚP MÌNH NHA 

0