Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|2,5-x\right|-1,3=0\)
th1: \(2,5-x\ge0\Leftrightarrow x\le2,5\)
\(\Rightarrow\left|2,5-x\right|-1,3=0\Leftrightarrow2,5-x-1,3=0\Leftrightarrow x=1,2\left(tmđk\right)\)
th2: \(2,5-x< 0\Leftrightarrow x>2,5\)
\(\Rightarrow\left|2,5-x\right|-1,3=0\Leftrightarrow x-2,5-1,3=0\Leftrightarrow x=3,8\left(tmđk\right)\)
vậy \(x=1,2;x=3,8\)
b) \(1,6.\left|x-0,2\right|=0\Leftrightarrow\left|x-0,2\right|=0\Leftrightarrow x-0,2=0\Leftrightarrow x=0,2\) vậy \(x=0,2\)
c) \(\left|\dfrac{1}{3}-x\right|-\left|\dfrac{-3}{7}\right|=0\)
th1: \(\dfrac{1}{3}-x\ge0\Leftrightarrow x\le\dfrac{1}{3}\)
\(\Rightarrow\left|\dfrac{1}{3}-x\right|-\left|\dfrac{-3}{7}\right|=0\Leftrightarrow\dfrac{1}{3}-x-\dfrac{3}{7}=0\Leftrightarrow x=\dfrac{-2}{21}\left(tmđk\right)\)
th2: \(\dfrac{1}{3}-x< 0\Leftrightarrow x>\dfrac{1}{3}\)
\(\Rightarrow\left|\dfrac{1}{3}-x\right|-\left|\dfrac{-3}{7}\right|=0\Leftrightarrow x-\dfrac{1}{3}-\dfrac{3}{7}=0\Leftrightarrow x=\dfrac{16}{21}\left(tmđk\right)\)
vậy \(x=\dfrac{-2}{21};x=\dfrac{16}{21}\)
d) \(\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)
th1: \(x+\dfrac{4}{15}\ge0\Leftrightarrow x\ge\dfrac{-4}{15}\)
\(\Rightarrow\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\Leftrightarrow x+\dfrac{4}{15}-3,75=-2,15\)
\(\Leftrightarrow x=\dfrac{4}{3}\left(tmđk\right)\)
th2: \(x+\dfrac{4}{15}< 0\Leftrightarrow x< \dfrac{-4}{15}\)
\(\Rightarrow\left|x+\dfrac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\Leftrightarrow-x-\dfrac{4}{15}-3,75=-2,15\)
\(\Leftrightarrow x=\dfrac{-28}{15}\left(tmđk\right)\)
vậy \(x=\dfrac{4}{3};x=\dfrac{-28}{15}\)
e) ta có : \(\left|x-1,5\right|\ge0\forall x\) và \(\left|2,5-x\right|\ge0\forall x\)
\(\Rightarrow\left|x-1,5\right|+\left|2,5-x\right|=0\Leftrightarrow\left\{{}\begin{matrix}x-1,5=0\\2,5-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1,5\\x=2,5\end{matrix}\right.\) 2 giá trị này khác nhau \(\Rightarrow\) phương trình vô nghiệm
a: =>1/6x=-49/60
=>x=-49/60:1/6=-49/60*6=-49/10
b: =>3/2x-1/5=3/2 hoặc 3/2x-1/5=-3/2
=>x=17/15 hoặc x=-13/15
c: =>1,25-4/5x=-5
=>4/5x=1,25+5=6,25
=>x=125/16
d: =>2^x*17=544
=>2^x=32
=>x=5
i: =>1/3x-4=4/5 hoặc 1/3x-4=-4/5
=>1/3x=4,8 hoặc 1/3x=-0,8+4=3,2
=>x=14,4 hoặc x=9,6
j: =>(2x-1)(2x+1)=0
=>x=1/2 hoặc x=-1/2
1.
\(\left(1-2x\right)^4=81\\ \Rightarrow\left[{}\begin{matrix}1-2x=3\\1-2x=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}-2x=2\\-2x=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
Vậy ...
2.
\(\left|2,5-x\right|=1,3\\ \Rightarrow\left[{}\begin{matrix}2,5-x=1,3\\2,5-x=-1,3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1,2\\x=3,8\end{matrix}\right.\)
Vậy ...
3.
\(5^x+5^{x+2}=650\\ 5^x\left(1+5^2\right)=650\\ 5^x\cdot26=650\\ 5^x=25\\ x=2\)
Vậy ...
4, 5 tự làm
Giải:
a) \(\dfrac{1}{3}x+\dfrac{1}{5}-\dfrac{1}{2}x=1\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{6}x=\dfrac{5}{4}\)
\(\Leftrightarrow\dfrac{1}{6}x=\dfrac{-21}{20}\)
\(\Leftrightarrow x=\dfrac{-63}{10}\)
Vậy ...
b) \(\dfrac{3}{2}\left(x+\dfrac{1}{2}\right)-\dfrac{1}{8}x=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{3}{2}x+\dfrac{3}{4}-\dfrac{1}{8}x=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{11}{8}x=\dfrac{-1}{2}\)
\(\Leftrightarrow x=\dfrac{-4}{11}\)
Vậy ...
Các câu sau làm tương tự câu b)
a) \(7-\sqrt{x}=0\)
\(\Rightarrow\sqrt{x}=7\)
\(\Rightarrow x=\left(\sqrt{7}\right)^2\)
b) \(5\sqrt{x}+1=40\)
\(\Rightarrow5\sqrt{x}=39\)
\(\Rightarrow\sqrt{x}=7,8\)
\(\Rightarrow x=\left(\sqrt{7,8}\right)^2\)
c) \(\dfrac{5}{12}\sqrt{x}-\dfrac{1}{6}=\dfrac{1}{3}\)
\(\Rightarrow\dfrac{5}{12}\sqrt{x}=\dfrac{1}{2}\)
\(\Rightarrow\sqrt{x}=1,2\)
\(\Rightarrow x=\left(\sqrt{1,2}\right)^2\)
d) \(4x^2-1=0\)
\(\Rightarrow\left(2x-1\right)\left(2x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=0\Rightarrow x=0,5\\2x+1=0\Rightarrow x=-0,5\end{matrix}\right.\)
e) \(\sqrt{x+1}-2=0\)
\(\Rightarrow\sqrt{x+1}=2\)
\(\Rightarrow x+1=1,414\)
\(\Rightarrow x=0,414\)
f) \(2x^2+0,82=1\)
\(\Rightarrow2x^2=0,18\)
\(\Rightarrow x^2=0,09\)
\(\Rightarrow x=\pm0,3\)
g) Không có kết quả
a, \(\left|x+\dfrac{1}{8}\right|-\dfrac{1}{6}=0\Leftrightarrow\left|x+\dfrac{1}{8}\right|=\dfrac{1}{6}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{8}=\dfrac{1}{6}\\x+\dfrac{1}{8}=\dfrac{-1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{24}\\x=\dfrac{-7}{24}\end{matrix}\right.\)
b, \(\dfrac{x}{27}=\dfrac{-2}{36}\Leftrightarrow36x=-2.27\Leftrightarrow36x=-54\Leftrightarrow x=\dfrac{-3}{2}\)
c, \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=\left(\dfrac{1}{4}\right)^2\)
\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\Leftrightarrow x=\dfrac{-1}{4}\)
Bài 7:
x/1=z/2 nên x/6=z/12
=>x/6=y/9=z/12
=>x/2=y/3=z/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{27}{9}=3\)
=>x=6; y=9; z=12
a) \(-5\cdot\left(x+\dfrac{1}{5}\right)-\dfrac{1}{2}\cdot\left(x-\dfrac{2}{3}\right)=\dfrac{3}{2}\cdot x-\dfrac{5}{6}\\ -5\cdot x+1-\dfrac{1}{2}\cdot x-\dfrac{1}{3}=\dfrac{3}{2}\cdot x-\dfrac{5}{6}\\ x\cdot\left(-5-\dfrac{1}{2}\right)+\dfrac{1}{3}+\dfrac{5}{6}=\dfrac{3}{2}\cdot x\\ x\cdot\dfrac{-11}{2}+\dfrac{7}{6}=\dfrac{3}{2}\cdot x\\ \dfrac{3}{2}\cdot x-\dfrac{-11}{2}\cdot x=\dfrac{7}{6}\\ x\cdot\left(\dfrac{3}{2}-\dfrac{-11}{2}\right)=\dfrac{7}{6}\\ x\cdot7=\dfrac{7}{6}\\ x=\dfrac{7}{6}:7\\ x=\dfrac{1}{6}\)
Vậy x = \(\dfrac{1}{6}\)
b, \(\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\dfrac{30}{62}\cdot\dfrac{31}{64}=2^x\\ \dfrac{1\cdot2\cdot3\cdot4\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot30\cdot31}{2^{30}\cdot\left(1\cdot2\cdot3\cdot4\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot30\cdot31\right)\cdot64}=2^x\\ \dfrac{1}{2^{30}\cdot2^6}=2^x\\ \dfrac{1}{2^{36}}=2^x\\ 2^{-36}=2^x\\ \Rightarrow x=-36\)
a) Ta có: \(\left|2.5-x\right|=1.3\)
\(\Leftrightarrow\left|x-2.5\right|=1.3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2.5=1.3\\x-2.5=-1.3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3.8\\x=-1.3+2.5=1.2\end{matrix}\right.\)
Vậy: \(x\in\left\{3.8;1.2\right\}\)
b) Ta có: \(1.6-\left|x-0.2\right|=0\)
\(\Leftrightarrow\left|x-0.2\right|=1.6\)
\(\Leftrightarrow\left[{}\begin{matrix}x-0.2=1.6\\x-0.2=-1.6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1.8\\x=-1.4\end{matrix}\right.\)
Vậy: \(x\in\left\{1.8;-1.4\right\}\)
c) Ta có: \(13^x=169\)
\(\Leftrightarrow13^x=13^2\)
\(\Leftrightarrow x=2\)
Vậy: x=2
d) Ta có: \(\dfrac{-2}{x}=\dfrac{-x}{\dfrac{8}{25}}\)
\(\Leftrightarrow\dfrac{2}{x}=\dfrac{x}{\dfrac{8}{25}}\)
\(\Leftrightarrow x^2=\dfrac{16}{25}\)
hay \(x\in\left\{\dfrac{4}{5};-\dfrac{4}{5}\right\}\)
Vậy: \(x\in\left\{\dfrac{4}{5};-\dfrac{4}{5}\right\}\)
\(|2,5-x|=1,3\)
\(\Rightarrow2,5-x=1,3\) hoặc -(2,5-x)=1,3
=>x=2,5-1,3 x-2,5=1,3
=>x=1,2 x=1,3+2,5=3,8
Vậy \(x\in\left\{1,2;3,8\right\}\)
\(1,6-|x-0,2|=0\Rightarrow|x-0,2|=1,6\)
=> x-0,2=1,6 hoặc -(x-0,2)=1,6
=>x=1,6+0,2 0,2-x=1,6
=>x=3,8 x=0,2-1,6=-1,4
Vậy \(x\in\left\{3,8;-1,4\right\}\)
\(13^x=169\Rightarrow13^x=13^2\Rightarrow x=2\)
\(\dfrac{-2}{x}=\dfrac{-x}{\dfrac{8}{25}}\Rightarrow-2\times\dfrac{8}{25}=-x\times x\Rightarrow\dfrac{-16}{25}=-x^2\Rightarrow\dfrac{16}{25}=x^2\Rightarrow x^2=\left(\dfrac{4}{5}\right)^2=\left(-\dfrac{4}{5}\right)^2\)
\(\Rightarrow x=\dfrac{4}{5}\) hoặc \(x=-\dfrac{4}{5}\)