Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/1.2 + 1/2.3 + .................+ 1/99.100 =
1/1 - 1/2 + 1/2 - 1/3 +....................+ 1/99 - 1/100 =
1/1 - 1/100 = 99/100
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}\)
vì \(\frac{99}{100}< 1\)
nên \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}< 1\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}< 1\)
Vậy A<1
Ta có :
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=\)\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=\)\(1-\frac{1}{100}\)
\(=\)\(\frac{99}{100}\)
Vậy \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}=\frac{99}{100}\)
Chúc bạn học tốt ~
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
ĐÚNG 100%
Làm tiếp
A=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...........+\frac{1}{99}-\frac{1}{100}\)
A=\(1-\frac{1}{100}\)
A=\(\frac{100}{100}-\frac{1}{100}\)
A=\(\frac{99}{100}\)
\(B=-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{98.99}-\frac{1}{99.100}\\
=-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\\
=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\\
=-\left(1-\frac{1}{100}\right)=\frac{-99}{100}\)
3A=1.2.3+2.3.(4-1)+.............+98.99.(100-97)+99.100.(101-98)
3A=1.2.3+2.3.4-1.2.3+...........+98.99.100-97.98.99+99.100.101-98.99.100
3A=99.100.101
A=99.100.101:3
A=333300
Ta có : 3A = 1.2.3 + 2.3.3 + 3.4.3 + .... + 98.99.3 + 99.100.3
=> 3A = 1.2.( 3 - 0 ) + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + ..... + 98.99.( 100 - 97 ) + 99.100.( 101 - 98 )
=> 3A = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ..... + 98.99.100 - 97.98.99 + 99.100.101 - 98.99.100
=> 3A = ( 1.2.3 + 2.3.4 + 3.4.5 + ..... + 98.99.100 + 99.100.101 ) - ( 0.1.2 + 1.2.3 + 2.3.4 + ..... + 98.99.100 )
=> 3A = 99.100.101 - 0.1.2
=> 3A = 99.100.101
=> A = 33.100.101
=> A = 333300
Đặt A= 1.2 + 2.3 + 3.4 + ...+ 99.100
3A = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3A= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3A= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3A = 99.100.101 3S = 3.33.100.101
A=33.100.101= 333300
A= 1.2 + 2.3 + 3.4 + ...+ 99.100
3A = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3A= 1.2.3+2.3﴾4‐1﴿+3.4﴾5‐2﴿+...+98.99﴾100‐97﴿+99.100﴾101‐98﴿
3A= 1.2.3+2.3.4‐1.2.3+3.4.5‐2.3.4+...‐97.98.99+99.100.101‐98.99.100
3A = 99.100.101 3S = 3.33.100.101
A=33.100.101= 333300
`1/( 1.2 ) + 1/( 2.3 ) + .......+1/(99.100)`
`= 1-1/2+1/2-1/3+.....+1/99-1/100`
`=1-1/100`
`=99/100`
=1-1/2+1/2-1/3+...+1/99-1/100
=1-1/100=99/100