Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
31 + 32 + 33 + ... + 32012
= (31 + 32 + 33) + (34 + 35 + 36) + ... + (32010 + 32011 + 32012)
= (31 + 32 + 33) + 33.(31 + 32 + 33) + ... + 32009.(31 + 32 + 33)
= 120 + 33.120 + ... + 32009.120
= 120.(1 + 33 + ... + 32009) chia hết cho 120
Đặt A = 3^1+3^2+3^3+......+3^2012
A=(3^1+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+...+(3^2019+3^2010+3^2011+3^2012)
A=3^1(1+119) + 3^5(1+119) + ... +3^2009(1+119)
A= 120 ( 3^1 + 3^5 +.... + 3^2009)
=> A chia hết cho 120
Ta có: 3^0 + 3^1 + 3^2 + 3^3 + ... + 3^11
= ( 3^0 + 3^1 + 3^2 + 3^3 ) + ... + ( 3^8 + 3^9 + 3^10 + 3^11 )
= 40 + ... + 3^8 . ( 3^0 + 3^1 + 3^2 + 3^3 )
= 40 + ... + 3^8 . 40
= 40 . ( 1 + ... + 3^8 ) \(⋮\)40
~ Chúc bạn học giỏi! ~
\(1+3+3^2+............+3^{11}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=1\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+3^8\left(1+3+3^2+3^3\right)\)
\(=1.40+3^4.40+3^8.40\)
\(=40\left(1+3^4+3^8\right)⋮40\left(đpcm\right)\)
Bài 1:
\(S=1+3^2+3^4+...+3^{2020}\)
\(=1+\left(3^2+3^4\right)+\left(3^6+3^8\right)+...+\left(3^{2018}+3^{2020}\right)\)
\(=1+3^2\left(1+3^2\right)+3^6\left(1+3^2\right)+...+3^{2018}\left(1+3^2\right)\)
\(=1+10\left(3^2+3^6+...+3^{2018}\right)\)
Suy ra \(S\)có chữ số tận cùng là chữ số \(1\).
Bài 2:
\(A=2+2^2+2^3+...+2^{2016}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2014}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{2014}\right)⋮7\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{59}+2^{60}\right)=3.2+3.2^3+3.2^5+..+3.2^{59}\) Vậy A chia hết cho 3
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..+\left(2^{58}+2^{59}+2^{60}\right)=7.2+7.2^4+..+7.2^{58}\) Vậy A chia hết cho 7
\(A=\left(2+2^2+2^3+2^4\right)+..+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)=2.15+2^5.15+..+2^{57}.15\) Vậy A chia hết cho 15.
\(B=\left(3+3^3+3^5\right)+..+\left(3^{1987}+3^{1989}+3^{1991}\right)=3.91+3^7.91+..+3^{1986}.91\)
mà 91 chia hết cho 13 nên B chia hết cho 13.
\(B=\left(3+3^3+3^5+3^7\right)+..+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)=3.820+3^9.820+..+3^{1985}.820\)Mà 820 chia hết cho 41 nên B chia hết cho 41.
D : để ý rằng \(11^k\) đều có đuôi là 1
nên D có đuôi là đuôi của \(1+1+..+1=10\)
Vậy D chia hết cho 5
A=2^1(1+2)+2^3*(2+1)+2^5(2+1)+2^7*(2+1)+2^9*(2+1)=3*(2+2^3+2^5+2^7+2^9) chia hết cho 3
A = 2 + 22 + 23 + ..... + 29 + 210
A = (2 + 22) + (23 + 24) + ... + (29 + 210)
A = (2.1 + 2.2) + (23.1 + 23.2) + ......+(29.1 + 29.2)
A = 2.(1+2) + 23.(1+2) + ..... + 29.(1+2)
A = 2.3 + 23.3 + ...... + 29.3
A = 3.(2+23+.....+29)
Vậy A chia hết cho 3
A=\(3^0+3^1+3^2+3^3+...+3^{11}\)
\(=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=40+...+3^8\left(1+3+3^2+3^3\right)\)
\(=40\left(1+...+3^8\right)⋮40\)
vậy.......
Theo đề ta có:
\(3^0+3^1+3^2+3^3+3^4+...+3^{11}\)
= \(\left(3^0+3^1+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)
= \(1\cdot\left(1+3+3^2+3^3\right)+3^4\cdot\left(1+3+3^2+3^3\right)+3^8\cdot\left(1+3+3^2+3^3\right)\)
= \(1\cdot40+3^4\cdot40+3^8\cdot40\)\(⋮\)\(40\)
\(\text{ Nên }A\)\(⋮\)\(40\)
\(\text{Vậy }A⋮40\)