Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S3=1+(-3)+5+(-7)+....+2021+(-2023)
S3=[1+(-3)]+[5+(-7)]+...+[2021+(-2023)]
S3=-2+(-2)+...+(-2) ( có 1011 số -2 )
S3=-2. 1011
S3=-2022
A=1-3+5-7+...+2019-2021+2023
A = 1 + 5 + .. .+ 2019 + 2023 - 3 - 7 - ... - 2017 - 2021
A = ( 1 + 5 + ... + 2023 ) - ( 3 + 7 + ... + 2021 )
A = 512578
1-3-5+7+9-11-13+15+...+2017-2019-2021+2023=
=(1-3-5+7)+(9-11-13+15)+...+(2017-2019-2021+2023)=
=0+0+.....+0=0
2) \(B=\left(1-2-3+4\right)+\left(5-6-7+8\right)+...+\left(1989-1990-1991+1992\right)+1993-1994\)
\(=0+0+...+0+1993-1994=0+1993-1994=-1\)
\(A=1-3+5-7+......-2019+2021-2023\)
\(A=\left(1-3\right)+\left(5-7\right)+....+\left(2021-2023\right)\)
\(A=-2+\left(-2\right)+....+\left(-2\right)\left(506 cặp\right)\)
\(A=-2.506\)
\(A=-1012\)
*) A=(1-3)+(5-7)+....+(2021-2023)
<=> A=-2+(-2)+...+(-2)
Dãy A có (2023-1):2+1=1012 số số hạng
=> Có 506 số (-2)
=> A=(-2).506=-1012
P=[(1-2)+(-3+4)+(5-6)+(-7+8)+...+(993-994)+(-995+996)]+997
P=[(-1)+1+(-1)+1+...+(-1)+1+(-1)+1]+997
P= 0 +0 +...+ 0 +997
P=997
18, P = 50 - (2022 + 50 - 118) + (2022 - 18)
P = 50 - 2022 - 50 + 118 + 2022 - 18
P = (50 - 50) - (2022 - 2022) + (118 - 18)
P = 0 - 0 + 100
P = 0
19, Q = 1 - 3 + 5 - 7 + ... + 2021 - 2023 + 2025
Xét dãy số 1; 3; 5; 7;..; 2021; 2025, đây là dãy số cách đều với khoảng cách là: 3 - 1 = 2
Số số hạng của dãy số trên là: (2025 - 1) : 2 + 1 = 1013
1013 : 2 = 506 dư 1
Vậy Q có 1013 hạng tử nhóm 2 hạng tử liên tiếp của A thành một nhóm ta được:
Q = ( 1 - 3) + ( 5 - 7) + (9 - 11) +...+ (2021 - 3) + 2025
Q = - 2 + (-2) +...+ (-2) + 2025
Q = - 2.506 + 2025
Q = - 1012 + 2025
Q = 1013
Đặt A=1-3+5-7+...+2021-2023
Số số lẻ trong khoảng từ 1 đến 2023 là:
\(\dfrac{2023-1}{2}+1=\dfrac{2022}{2}+1=1011+1=1012\left(số\right)\)
Ta có: 1-3=5-7=...=2021-2023=-2
=>Sẽ có \(\dfrac{1012}{2}=506\) cặp số có tổng là -2 trong biểu thức A
=>\(A=506\cdot\left(-2\right)=-1012\)
\(1-3+5-7...+2021-2023\)
\(=(1-3)+(5-7)+....+(2021-2023) \\ =-2+(-2)+...+(-2) \text{có 1012 số } \\ = -2.1012 \\ =2024\)