Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+2x^2-x-2\)
\(=x^3+3x^2+2x-1x^2-3x-2\)
\(=x\left(x^2+3x+2\right)-1\left(x^2+3x+2\right)\)
\(=\left(x-1\right)\left(x^2+3x+2\right)\)
\(=\left(x-1\right)\left(x^2+x+2x+2\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+2\right)\)
\(x^3+3x+2\)
\(=x^3+2x^2-2x^2-4x+x+2\)
\(=\left(x+2\right)x^2-2\left(x^2+2x\right)+x+2\)
\(=\left(x+2\right)x^2-2\left(x^2+2x\right)1\left(x+2\right)\)
\(=\left(x^2-2x+1\right)\left(x+2\right)\)
\(=\left(x-1\right)^2\left(x+2\right)\)
a kham khảo nha , e nhờ a e lm chứ ko phải e lm nha !
\(\left(x-2\right)\left(\frac{3}{x}+2-\frac{5}{2x}-4+\frac{8}{x^2}-4\right)\)
\(\left(x-2\right)\left[\left(\frac{3}{x}-\frac{5}{2x}\right)-6+\frac{8}{x^2}\right]\)
\(\left(x-2\right)\left(\frac{1}{2x}-6+\frac{8}{x^2}\right)\)
\(\left(x-2\right)\left(\frac{3}{x+2}-\frac{5}{2x-4}+\frac{8}{x^2-4}\right)\)
\(=\left(x-2\right)\left[\frac{3}{x+2}-\frac{5}{2\left(x-2\right)}+\frac{8}{\left(x-2\right)\left(x+2\right)}\right]\)
\(=\left(x-2\right)\left[\frac{3.2\left(x-2\right)}{2\left(x-2\right)\left(x+2\right)}-\frac{5\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)}+\frac{8.2}{2\left(x-2\right)\left(x+2\right)}\right]\)
\(=\left(x-2\right)\left[\frac{6\left(x-2\right)}{2\left(x-2\right)\left(x+2\right)}-\frac{5\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)}+\frac{16}{2\left(x-2\right)\left(x+2\right)}\right]\)
\(=\left(x-2\right)\left[\frac{6\left(x-2\right)-5\left(x+2\right)+16}{2\left(x-2\right)\left(x+2\right)}\right]\)
\(=\frac{\left(x-2\right)\left(x-6\right)}{2\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x-6}{2\left(x+2\right)}\)
\(\frac{2x^2-3x-20}{x^2-16}\)
\(=\frac{2x^2-8x+5x-20}{\left(x-4\right)\left(x+4\right)}\)
\(=\frac{2x\left(x-4\right)+5\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}\)
\(=\frac{\left(2x+5\right)\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}\)
\(=\frac{2x+5}{x+4}\)
Vậy ...
\(\frac{x^2+y^2-1+2xy}{x^2-y^2+1+2x}\)
\(=\frac{\left(x+y\right)^2-1}{\left(x-1\right)^2-y^2}\)
\(=\frac{\left(x+y-1\right)\left(x+y+1\right)}{\left(x-1-y\right)\left(x-1+y\right)}\)
\(=\frac{x+y+1}{x-y-1}\)
`Answer:`
`a)`
`A=5(x+1)^2-3(x-3)^2-4(x^2-4)`
`=>A=5(x^2+2x+1)-3(x^2-6x+9)-4x^2+16`
`=>A=5x^2+10x+5-3x^2+18x-27-4x^2+16`
`=>A=(5x^2-3x^2-4x^2)+(10x+18x)+(5-27+16)`
`=>A=-2x^2+28x-6`
`b)`
`B=5(x+1)^2-3(x-3)^2-4(x+2)(x-2)`
`=2x(3x+5)-3(3x+5)-2x(x^2-4x+4)-[(2x)^2-3^2]`
`=6x^2+10x-9x-15-2x^3+8x^2-8x-4x^2+9`
`=(6x^2-4x^2+8x^2)-2x^3+(10x-9x-8x)+(-15+9)`
Thay `x=-7` vào ta được:
`B=10(-7)^2-2(-7)^3-7(-7)-6`
`=>B=10.49-2(-343)+49-6`
`=>B=490+686+49-6`
`=>B=1219`
\(\frac{x^2+xy-y^2}{2x^2-3xy+y^2}\)
\(=\frac{x^1+xy-y^1}{2x^1-3xy+y^1}\)
Vậy: Phân thức có thể rút gọn cho 2
P/s: Ko chắc đâu nhé :v
TL
\(\frac{x-2}{2x-x^2}\)=\(-\frac{2-x}{x.\left(2-x\right)}\)=\(-\frac{1}{x}\)
HỌC TỐT
#@#@##