Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC và tam giác EBD có:
- Cạnh BD chung
-Góc ABD = góc EBD ( vì BD là tia pg của góc ABE
-BE=BA(gt)
Vậy tam giác ABC và tam giác EBD bằng nhau (C.g.c)
b)Từ câu a suy ra góc A = góc BED (2 góc t ứng)
mà góc A =90 độ suy ra góc BED =90 độ
a) Xét 2 tam giác vuông: \(\Delta ABM\) và \(\Delta EBM\) có:
\(\widehat{ABM}=\widehat{EBM}\)(gt)
\(BM:\) CHUNG
suy ra: \(\Delta ABM=\Delta EBM\) (CH_GN)
b) \(\Delta ABM=\Delta EBM\)
\(\Rightarrow\)\(AB=EB\) => B thuộc trung trực AE
\(MA=ME\) => M thuộc trung tính AE
suy ra: BM là trung trực AE
c) \(\Delta EMC\) vuông tại E
=> \(EM< MC\)
mà \(EM=AM\)
\(\Rightarrow\)\(AM< MC\)
a: Xét ΔBAM và ΔBEM có
BA=BE
\(\widehat{ABM}=\widehat{EBM}\)
BM chung
Do đó: ΔBAM=ΔBEM
A A A B B B C C C M M M E E E
a) Xét \(\Delta ABM\)và \(\Delta\)EBM có :
AB = EB(gt)
BM chung
\(\widehat{M}_1=\widehat{M_2}\)
=> \(\Delta ABM=\Delta EBM\left(c.g.c\right)\)
b) Ta có : \(\Delta ABM=\Delta EBM\left(c.g.c\right)\)
=> \(\widehat{BAM}=\widehat{EBM}\)(hai góc tương ứng)
=> AM = EM
c) Lại có : \(\widehat{BAM}=\widehat{EBM}\)(hai góc tương ứng)
=> \(\widehat{BAM}=\widehat{EBM}=90^0\)
A A A B B B C C C E E E M M M
Hình vẽ đây mới đúng á,bạn sửa dùm mình \(\widehat{M_1}=\widehat{M_2}\)thành \(\widehat{B_1}=\widehat{B_2}\)nhé
Ta có hình vẽ:
A B C M E
a/ Xét tam giác ABM và tam giác EBM có:
BM: chung
\(\widehat{ABM}\)=\(\widehat{EBM}\) (vì BM là phân giác \(\widehat{ABE}\))
AB = EB (GT)
Vậy tam giác ABM = tam giác EBM (c.g.c)
b/ Ta có: tam giác ABM = tam giác EBM (câu a)
=> AM = EM (2 cạnh tương ứng)
c/ Ta có: tam giác ABM = tam giác EBM (câu a)
=> \(\widehat{A}\)=\(\widehat{BEM}\)=900 (2 góc tương ứng)