K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 3:

a: =>(2x-7)(x-2)=0

=>x=7/2 hoặc x=2

b: =>(x-1)(x+2)=0

=>x=1 hoặc x=-2

d: =>2x+3=0

hay x=-3/2

31 tháng 8 2016

Bạn phải bấm rõ mình mới giúp dc, nhìn vào ko hỉu lắm

31 tháng 8 2016

OK

ok

19 tháng 9 2017

Nhìn cái đề xong .........

pp bác em đi chớt..........

6 tháng 8 2019

\(a,\left(2a+3\right)x-\left(2a+3\right)y+\left(2a+3\right)\)

\(=\left(2a+3\right)\left(x-y+1\right)\)

\(b,\left(4x-y\right)\left(a-1\right)-\left(y-4x\right)\left(b-1\right)+\left(4x-y\right)\left(1-c\right)\)

\(=\left(4x-y\right)\left(a-1\right)+\left(4x-y\right)\left(b-1\right)+\left(4x-y\right)\left(1-c\right)\)

\(=\left(4x-y\right)\left(a-1+b-1+1-c\right)\)

\(=\left(4x-y\right)\left(a+b-c-1\right)\)

\(c,x^k+1-x^k-1\)

\(=0?!?!\)

\(d,x^m+3-x^m+1\)

\(=4\)

\(e,3\left(x-y\right)^3-2\left(x-y\right)^2\)

\(=\left(x-y\right)^2\left(3\left(x-y\right)-2\right)\)

\(=\left(x-y\right)^2\left(3x-3y-2\right)\)

6 tháng 8 2019

\(f,81a^2+18a+1\)

\(=\left(9a\right)^2+2.9a+1\)

\(=\left(9a+1\right)^2\)

\(g,25a^2.b^2-16c^2\)

\(=\left(5ab\right)^2-\left(4c\right)^2\)

\(=\left(5ab+4c\right)\left(5ab-4c\right)\)

\(h,\left(a-b\right)^2-2\left(a-b\right)c+c^2\)

\(=\left(a-b-c\right)^2\)

\(i,\left(ax+by\right)^2-\left(ax-by\right)^2\)

\(=\left(ax+by-ax+by\right)\left(ax+by+ax-by\right)\)

\(=2by.2ax\)

\(=4axby\)

1: \(=a\left(x+y\right)-4\left(x+y\right)=\left(x+y\right)\left(a-4\right)\)

2: \(=x\left(x+b\right)+a\left(x+b\right)=\left(x+b\right)\left(x+q\right)\)

3: \(=a\left(x+1\right)-b\left(x+1\right)+c\left(x+1\right)\)

\(=\left(x+1\right)\left(a-b+c\right)\)

6: \(=\left(x-y\right)^2-4=\left(x-y-2\right)\left(x-y+2\right)\)

6 tháng 9 2020

a) \(\left(x+y\right)^3-x^3-y^3\)

\(=\left(x+y\right)^3-\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-x^2+xy-y^2\right]\)

\(=\left(x+y\right)\left(x^2+2xy+y^2-x^2+xy-y^2\right)\)

\(=3xy\left(x+y\right)\)

b) \(x^2+y^2+2xy+yz+xz\)

\(=\left(x^2+2xy+y^2\right)+\left(yz+xz\right)\)

\(=\left(x+y\right)^2+z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y+z\right)\)

c) \(x^2-10xy-1+25y^2\)

\(=\left(x^2-10xy+25y^2\right)-1\)

\(=\left(x-5y\right)^2-1\)

\(=\left(x-5y-1\right)\left(x-5y+1\right)\)

d) \(ax^2-ax+bx^2-bx+a+b\)

\(=(ax^2+bx^2)-(ax+bx)+(a+b)\)

\(=x^2(a+b)-x(a+b)+(a+b)\)

\(=(a+b)(x^2-x+1)\)

e)\(x^2-2y+3xz+x-2y+3z\)

\(=(x^2+x)-(2xy+2y)+(3xz+3z)\)

\(=x(x+1)-2y(x-1)+3z(x+1)\)

\(=(x+1)(x-2y+3z)\)

f) \(xyz-xy-yz-xz+x+y+z-1\)

\(=(xyz-xy)-(yz-y)-(xz-x)+(z-1)\)

\(=xy(z-1)-y(z-1)-x(z-1)+(z-1)\)

\(=(z-1)(xy-y-x+1)\)

\(=(z-1)[y(x-1)-(x-1)]\)

\(=(z-1)(x-1)(y-1)\)

_Học tốt_

9 tháng 8 2017

B3) a) x(x-5)-4(x-5)=0

<=> (x-4)(x-5)=0

TH1 :x-4=0

<=.x=4

TH2 : x-5=0

<=>x=5

b) x(x-6)-7x-42=0

<=>x(x+6)-7(x+6)=0

<=>(x-7)(x+6)=0

th1;x-7=0

<=>x=7

th2; x+6=0

<=>x=-6

c)x^3-5x^2+x-5=0

<=>  x(x^2+1)-5(x^2+1)=0

<=> (x-5)(x^2+1)=0

th1:x-5=0

<=>x=5

TH2 : x^2+1=0

<=> x^2=-1 ( vo li )

=> th2 ko tồn tại 

nho thick nha  

9 tháng 8 2017

Bài 3

a, x(x-5)-4(x-5)=0

 (x-4)(x-5)=0

=>\(\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)

b,x(x+6)-7(x+6)=0

(x-7)(x+6)=0\(\Rightarrow\orbr{\begin{cases}x-7=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-6\end{cases}}\)

c,x^2(x-5)+(x-5)=0

(x^2+1)(x-5)=0

\(\Rightarrow\orbr{\begin{cases}x^2+1=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\in\Phi\\x=5\end{cases}}\)

29 tháng 6 2016

bạn đăng nhiều vậy ??

25 tháng 7 2017

Bài 1 : 

a ) \(x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3+y\right)\left(x-3-y\right)\)

b)  \(25-4x^2-4xy-y^2=5^2-\left(4x^2+4xy+y^2\right)=5^2-\left(2x+y\right)^2=\left(5+2x+y\right)\left(5-2x-y\right)\)

c)  \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z.\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)

d)   \(x^2-4xy+4y^2-z^2+4tz-4t^2=\left(x^2-4xy+4y^2\right)-\left(z^2-4tz+4t^2\right)\)

\(=\left(x-2y\right)^2-\left(z-2t\right)^2=\left(x-2y+z-2t\right).\left(x-2y-z+2t\right)\)

BÀi 2 : 

a)   \(ax^2+cx^2-ay+ay^2-cy+cy^2=\left(ax^2+cx^2\right)-\left(ay+cy\right)+\left(ay^2+cy^2\right)\)

\(=x^2.\left(a+c\right)-y\left(a+c\right)+y^2.\left(a+c\right)=\left(a+c\right).\left(x^2-y+y^2\right)\)

b)   \(ax^2+ay^2-bx^2-by^2+b-a=\left(ax^2-bx^2\right)+\left(ay^2-by^2\right)-\left(a-b\right)\)

\(=x^2.\left(a-b\right)+y^2.\left(a-b\right)-\left(a-b\right)=\left(a-b\right)\left(x^2+y^2-1\right)\)

c)  \(ac^2-ad-bc^2+cd+bd-c^3=\left(ac^2-ad\right)+\left(cd+bd\right)-\left(bc^2+c^3\right)\)

\(=-a.\left(d-c^2\right)+d.\left(b+c\right)-c^2.\left(b+c\right)=\left(b+c\right).\left(d-c^2\right)-a\left(d-c^2\right)\)

\(=\left(b+c-a\right)\left(d-c^2\right)\)

BÀi 3 : 

a)  \(x.\left(x-5\right)-4x+20=0\) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=4\end{cases}}}\)

b)  \(x.\left(x+6\right)-7x-42=0\)\(\Leftrightarrow x.\left(x+6\right)-7.\left(x+6\right)=0\) \(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+6=0\\x-7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-6\\x=7\end{cases}}}\)

c)   \(x^3-5x^2+x-5=0\) \(\Leftrightarrow x^2.\left(x-5\right)+\left(x-5\right)=0\) \(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)\)

\(\Leftrightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=-1\left(KTM\right)\\x=5\end{cases}}}\)

d)   \(x^4-2x^3+10x^2-20x=0\) \(\Leftrightarrow x.\left(x^3-2x^2+10x-20\right)=0\)\(\Leftrightarrow x.\left[x^2.\left(x-2\right)+10.\left(x-2\right)\right]=0\)  \(\Leftrightarrow x.\left(x-2\right)\left(x^2+10=0\right)\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-2=0\\x^2+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\left(KTM\right)\end{cases}}}\)