Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn chép lại đề nha
\(=x^4-x+1997\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+1997\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+1997\right)\)
xong nha. chúc bn hc tốt
=(x4+x2+1)+(1996x2+1996x+1996)
=(x2+x+1)(x2-x+1)+1996(x2+x+1)
=(x2+x+1)(x2-x+1+1996)
Ta có :
\(x^4+1997x^2+1996x+1997\)
\(=x^4+1997x^2+1997x-x+1997\)
\(=\left(x^4-x\right)+\left(1997x^2+1997x+1997\right)\)
\(=x\left(x^3-1\right)+1997\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+1997\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+1997\right)\)
\(x^3-x^2-14x+24\)
\(=x^3+4x^2-5x^2-20x+6x+24\)
\(=\left(x^3+4x^2\right)-\left(5x^2+20x\right)+\left(6x+24\right)\)
\(=x^2\left(x+4\right)-5x\left(x+4\right)+6\left(x+4\right)\)
\(=\left(x^2-5x+6\right)\left(x+4\right)\)
\(=\left(x^2-2x-3x+6\right)\left(x+4\right)\)
\(=\left[x\left(x-2\right)-3\left(x-2\right)\right]\left(x+4\right)\)
\(=\left(x-2\right)\left(x-3\right)\left(x+4\right)\)
a) Ta có : x2 - 4x + 3
= x2 - x - 3x + 3
= x(x - 1) - (3x - 3)
= x(x - 1) - 3(x - 1)
= (x - 1) (x - 3)
a) \(x^2-4x+3\)
\(=x^2-x-3x+3\)
\(=x\left(x-1\right)-3\left(x-1\right)\)
\(=\left(x-1\right)\left(x-3\right)\)
b) \(x^2+5x+4\)
\(=x^2+x+4x+4\)
\(=x\left(x+1\right)+4\left(x+1\right)\)
\(=\left(x+1\right)\left(x+4\right)\)
c) \(x^2-x-6\)
\(=x^2-3x+2x-6\)
\(=x\left(x-3\right)+2\left(x-3\right)\)
\(=\left(x+2\right)\left(x-3\right)\)
d) \(x^4+1997x^2+1996x+1997\)
\(=x^4+x^2+1996x^2+1996x+1996+1\)
\(=\left(x^4+x^2+1\right)+\left(1996x^2+1996x+1996\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)+1996\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+1997\right)\)
e) \(x^2-2001\cdot2002\)( hình như sai sai)
\(x^2+5x-2=\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}\right)-\frac{25}{4}-2=\left(x+\frac{5}{2}\right)^2-\frac{33}{4}\)
\(=\left(x+\frac{5}{2}\right)^2-\left(\frac{\sqrt{33}}{2}\right)^2=\left(x+\frac{5}{2}-\frac{\sqrt{33}}{2}\right)\left(x+\frac{5}{2}+\frac{\sqrt{33}}{2}\right)\)
\(=\left(x+\frac{5-\sqrt{33}}{2}\right)\left(x+\frac{5+\sqrt{33}}{2}\right)\)
Pt vô nghiệm
=> dùng hệ số bất định hay phân tích có nhân tử là (x2+x+1)