Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x2 + 2y2 + b2 + 3xy - bx - by = 0
<=> 4x2 + 4y2 + 2b2 + 6xy - 2bx - 2by = 0
<=> (x2 - 2bx + b2) + (y2 - 2by + y2) + (3x2 + 6xy + 3y2) = 0
<=> (x - b)2 + (y - b)2 + 3(x + y)2 = 0
Ta thấy VT > 0 nên không có nghiệm.
PS: Không phải phân tích nhân tử mà là giải phương trình nhé.
Câu 1:
\(a^2+2ab+b^2-2a-2b+1\)
\(=\left(a+b\right)^2-2\left(a+b\right)+1\)
\(=\left(a+b-1\right)^2\)
Câu 2:
Xét BToán \(x+y+z=0\Leftrightarrow x^3+y^3+z^3=3xyz\)
Mà \(\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=0\)
\(\Rightarrow\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
b)Thay (y-x)2 bằng (x-y)2, sau đó đặt nhân tử
e)Nhóm 3 số cuối vào 1 nhóm
f)Áp dụng HĐT thứ 3 bình thường
Câu 1:
\(a^2+2ab+b^2-ac-bc\)
\(=\left(a+b\right)^2-c\left(a+b\right)\)
\(=\left(a+b\right)\left(a+b-c\right)\)
Câu 2:
\(5x^2-5y^2-10x+10y\)
\(=5\left(x-y\right)\left(x+y\right)-10\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+5y-10\right)\)
\(=5\left(x-y\right)\left(x+y-2\right)\)
Câu 3:
\(3x^2-6xy+3y^2-12z^2\)
\(=3\left[\left(x-y\right)^2-4z^2\right]\)
\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)
Câu 4:
\(x^4+x^3+x^2-1\)
\(=x^3\left(x+1\right)+\left(x-1\right)\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+x-1\right)\)
Câu 5:
\(x^3-3x^2+3x-1-y^3\)
\(=\left(x-1\right)^3-y^3\)
\(=\left(x-1-y\right)\left[\left(x-1\right)^2+\left(x-1\right)y+y^2\right]\)
\(=\left(x-y-1\right)\left(x^2-2x+1+xy-y+y^2\right)\)
Câu 6:
\(x^4-x^2+2x-1\)
\(=x^4-\left(x-1\right)^2\)
\(=\left(x^2-x+1\right)\left(x^2+x-1\right)\)
Câu 7:
\(\left(x+y\right)^3-x^3-y^3\)
\(=\left(x+y\right)^3-\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]\)
\(=3xy\left(x+y\right)\)
Câu 1:
\(a^3+a^2b-ab^2-b^3\)
\(=a^2\left(a+b\right)-b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2-b^2\right)\)
\(=\left(a+b\right)\left(a-b\right)\left(a+b\right)\)
\(=\left(a+b\right)^2\left(a-b\right)\)
Câu 2:
\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)
\(=a\left(b^3-c^3\right)+bc^3-a^3b+a^3c-b^3c\)
\(=a\left(b-c\right)\left(b^2+bc+c^2\right)-a^3\left(b-c\right)-bc\left(b-c\right)\left(b+c\right)\)
\(=\left(b-c\right)\left(ab^2+abc+c^2a-a^3-b^2c-bc^2\right)\)
\(=\left(b-c\right)\left[a\left(c-a\right)\left(c+a\right)-b^2\left(c-a\right)-bc\left(c-a\right)\right]\)
\(=\left(b-c\right)\left(c-a\right)\left(ca+a^2-b^2-bc\right)\)
\(=\left(b-c\right)\left(c-a\right)\left[\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)
a) ktra lại đề
b) \(3x^2+6xy+3y^2-3z^2=3\left(x^2+2xy+y^2-z^2\right)=3\left[\left(x+y\right)^2-z^2\right]\)
\(=3\left(x+y+z\right)\left(x+y-z\right)\)
c) \(x^2-2xy+y^2-z^2+2zt-t^2=\left(x-y\right)^2-\left(z-t\right)^2=\left(x-y-z+t\right)\left(x-y+z-t\right)\)
d) \(2x^2+4x-2-2y^2=2\left(x^2-y^2+2x-1\right)\)
e) \(2xy-x^2-y^2+16=16-\left(x-y\right)^2=\left(4-x+y\right)\left(4+x-y\right)\)
f) \(2x-2y-x^2+2xy-y^2=2\left(x-y\right)-\left(x-y\right)^2=\left(x-y\right)\left(2-x+y\right)\)
g) \(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)-4x^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
h) \(x^3+2x^2+2x+1=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=\left(x+1\right)\left(x^2+x+1\right)\)
b, <=>(4x)3+13
<=> (4x+1)( 16x2-4x+1)
c, <=> (x.y2.z3)3-53
<=> (xy2z3-5)( x2y4z6+5xy2z3+25)
d, <=> (3x2)3-(2x)3
<=> (3x2-2x)(9x4+6x3+4x2)
d, (x3)2- (y3)2
= (x3+y3)(x3-y3)