Cho tam giác ABC nhọn có AB = AC, H là tr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2016

Xét tam giác ABH và tam giác ACH có:

AB = AC ( gt)

BH=HC ( H là trung điểm của BC)

Cạnh AH chung

=> tam giác AHB= tam giác AHC( c.c.c)

b) Vì tam giác AHB = tam giác AHC ( cm trên)

=> góc AHB = góc AHC ( 2 góc tương ứng )

Mà góc AHB + góc AHC = 180o( 2 góc kề bù)

=> góc AHB = góc AHC = 180o : 2= 90o

=> AH \(\perp\) BC ( câu c) mik đnag nghĩ)

11 tháng 5 2016

D E F B I H K

a,xét \(\Delta\)vuông EDB(góc EDB=90 độ)và\(\Delta\)vuông EIB(góc EIB=90 độ)có:

    EB chung

   góc DEB =góc BEI(gt)

=>\(\Delta\)vuôngEDB=\(\Delta\)vuông EIB(cạnh huyền-góc nhọn)    

b,=>DB=BI(2 cah t/ứng)

xét \(\Delta\)vuôngDBH(góc HDB=90 độ)và\(\Delta\)vuông IBF(góc FIB=90 độ)có:

   góc DBH=góc IBF(đđ)

   DB=BI(cmt)

=>\(\Delta\)vuông DBH=\(\Delta\)vuông IBF(góc nhọn kề cạnh góc vuông)

=>HB=BF(2 cah t/ứng)

c,có \(\Delta\)DBH vuông tại D(gt)                

=>DB<HB(cah đối diện với góc lớn nhất)

mà BH=BF =>DB<BF

d,từ câu a=>ED=EI

có ED=EI , DH=IF=>ED+DH=EI+IF=EH=EF

=>\(\Delta\)EHF cân tại E(đl tam giác cân)

dựa vào trường hợp đặc biệt của tam giác cân:

 có EB là tia phân giác=>EB c~  là đng trung tuyến (1)

mà K là trung điểm của HF=>K thuộc trung tuyến EB(2)

=>từ 1 và 2 ta có E,B,K đều thuộc trung tuyến EB

hay E,B,K thẳng hàng

                               

 

 

 

11 tháng 3 2017

GT, KL, hình vẽ (tự làm)

a) Ta có: Góc DEB = góc FEB ( EB là tia phân giác)

Hay góc DEB = góc IEB

Xét \(\Delta EDB\) vuông tại D và \(\Delta EIB\) vuông tại I có:

EB chung

góc DEB = góc IEb (cmt)

\(\Rightarrow\Delta EDB=\Delta EIB\) (cạnh huyền- góc nhọn)

\(\Rightarrow DB=IB\) ( 2 cạnh t/ứ)

b) Xét \(\Delta DBH\) vuông tại D và \(\Delta IBF\) vuông tại I có:

DB = IB (cmt)

góc DBH = góc IBF (2 góc đối đỉnh)

\(\Rightarrow\Delta DBH=\Delta IBF\left(c.h-g.n\right)\)

\(\Rightarrow BH=BF\)( 2 cạnh tương ứng)

c) Tự làm

d)c) t/g BDH = t/g BIF (câu b)
=> DH = IF (2 cạnh tương ứng)
Mà ED = EI (do t/g EDB = t/g EIB
=> DH + ED = IF + EI
=> EH = EF
t/g EHK = t/g EFK (c.c.c)
=> HEK = FEK (2 góc tương ứng)
=> EK là phân giác HEF (1)
Có: DEB = IEB (do t/g EDB = t/g EIB
=> EB là phân giác DEI (2)
Từ (1) và (2) => E,B,K thẳng hàng (đpcm)

a: \(\widehat{A}=180^0-70^0-36^0=74^0\)

Xét ΔABC có \(\widehat{A}>\widehat{B}>\widehat{C}\)

nên BC>AC>AB

b: Xét ΔABM vuông tại B và ΔADM vuông tại D có 

AM chung

AB=AD

Do đó: ΔABM=ΔADM

c: Ta có: ΔABM=ΔADM

nên MB=MD

hay M nằm trên đường trung trực của BD(1)

Ta có: AB=AD

nên A nằm trên đường trung trực của BD(2)

Ta có: NB=ND

nên N nằm trên đường trung trực của BD(3)

Từ (1), (2) và (3) suy ra A,N,M thẳng hàng

12 tháng 12 2016

Ta có hình vẽ sau:

 

 

A B C M D N E

a) Xét ΔABM và ΔCDM có:

MB = MD (gt)

\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)

AM = CM (gt)

=> ΔABM = ΔCDM (c.g.c)(đpcm)

b) Vì ΔABM = ΔCDM (ý a)

=> \(\widehat{BAM}=\widehat{DCM}\) (2 góc tương ứng)

mà 2 góc này lại ở vị trí so le trong nên

=> AB // CD (đpcm)

c) +)Vì ΔAB // CD (ý b)

=> \(\widehat{NBM}=\widehat{EDM}\) (so le trong)

Xét ΔMNB và ΔMED có:

\(\widehat{EMD}=\widehat{NMB}\) (đối đỉnh)

MB = MD (gt)

\(\widehat{NBM}=\widehat{EDM}\) (cm trên)

=> ΔMNB = ΔMED (g.c.g)

=> NB = ED(2 cạnh tương ứng) (1)

+) CM tương tự ta có:

ΔMEA = ΔMNC(g.c.g)

=> EA = NC (2 cạnh tương ứng) (2)

Từ (1) và (2)

=> EA = ED => E là trung điểm của AD (đpcm)

12 tháng 12 2016

á, sao đã tl rồi thế này hả

Nguyễn Thị Thu An,

Trần Nghiên Hy

 
26 tháng 12 2017

Cho tam giác ABC có các góc đều nhọn và AB < AC,Phân giác góc A cắt cạnh BC tại D,Vẽ BE vuông góc với AD tại E,Tia BE cắt cạnh AC tại F,Chứng minh AB = AF,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

Chúc bạn học tốt !!!

2 tháng 12 2016

Tam giác ABC vuông tại A có:

ABC + ACB = 900

ABC + 400 = 900

ABC = 900 - 400

ABC = 500

Xét tam giác ABD và tam giác EBD có:

AB = EB (gt)

ABD = EBD (BD là tia phân giác của ABE)

BD chung

=> Tam giác ABD = Tam giác EBD (c.g.c)

Xét tam giác AKB và tam giác BDA có:

KAB = DBA (2 góc so le trong, AK // BD)

AB chung

ABK = BAD (= 900)

=> Tam giác AKB = Tam giác BDA (g.c.g)

=> AK = BD (2 cạnh tương ứng)

BAD = BED (Tam giác ABD = Tam giác EBD)

mà BAD = 900 (tam giác ABC vuông tại A)

=> BED = 900

=> DE _I_ BC

Tam giác FBC có: CA là đường cao (CA _I_ BF)

BH là đường cao (BH _I_ FC)

mà CA cắt BH tại D

=> D là trực tâm của tam giác FBC

=> FD là đường cao của tam giác FBC

=> FD _I_ BC

mà ED _I_ BC (chứng minh trên)

=> \(FD\equiv ED\)

=> E, D, F thẳng hàng

29 tháng 3 2017

a) xét tam giác EKB vuông tại K (EK\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)\(\perp\)\(\perp\perp\) vuông góc với AB) có

EK là cạnh góc vuông

EB là cạnh huyền

Vì trong \(\Delta\)tam giác vuông, cạnh huyền là cạnh lớn nhất.

suy ra: DC > DE

mà EK = CE (tam giác ACE = tam giác AKE)

suy ra: CE < EB

hình tự kẻ nha

a, XÉT  \(\Delta BDC\), có I  , M là TĐ của CD , BC 

\(\Rightarrow\)IM là đường trung bình của tg BDC

\(\Rightarrow\)IM = 1/2 BD   (t/c đg trung bình )

Xét tg CDE có N là TĐ của DE 

                        I là TĐ của  CD

\(\Rightarrow\)NI là đường trung bình của tg CDE

\(\Rightarrow\)NI = 1/2 CE (t/c đg trung bình )

Ta có BD = CE (gt)

       NI=1/2 CE

      MI = 1/2BD

\(\Rightarrow\)NI = MI 

\(\Rightarrow\Delta NIM\)cân tại I 

b, Xét \(\Delta CBD\),có MI là đường trung bình 

\(\Rightarrow\)MI // AB (t/c đường trung bình )

\(\Rightarrow\)\(\widehat{NMI}=\widehat{APQ}\)( so le trong)                (1)

\(\Delta CDE\), có NI là đường trung bình 

\(\Rightarrow\)NI // AC (t/c đường trung bình) 

\(\Rightarrow\)\(\widehat{MNI}=\widehat{MQC}\)( đồng vị)

mà \(\widehat{MQC}=\widehat{AQP}\)(đối đỉnh )

\(\Rightarrow\widehat{MNI}=\widehat{AQP}\)         (2)

\(\Delta MNI\)cân tại I \(\Rightarrow\widehat{INM}=\widehat{IMN}\)           (3) 

từ (1) , (2) và (3) \(\Rightarrow\widehat{APQ}=\widehat{AQP}\)

             \(\Rightarrow\Delta APQ\) cân tại A

c,  Gọi AD là tia p/g của góc BAC  \(\Rightarrow2\widehat{DAC}=\widehat{BAC}\)( tính chất tia p/g)      (*)

xét \(\Delta APQ\)có \(\widehat{BAC}=\widehat{APQ}+\widehat{AQP}\)(tính chất góc ngoài)

                                          mà góc APQ = góc AQP suy ra góc BAC= \(\widehat{2AQP}\)(**)

từ (*) và (**) \(\Rightarrow\widehat{DAC}=\widehat{AQP}\)

                       Mà 2gocs trên lại ở vị trí so le trong của AD và PM 

\(\Rightarrow AD//PM\)

\(\Rightarrow\) MN // vs tia p/g của góc A trong tg ABC

#mã mã#