K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2019

Sửa lại đề : \(A=\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)

Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow xy+yz+xz=0\)

\(\Rightarrow\hept{\begin{cases}xy=-yz-xz\\yz=-xy-xz\\zx=-yz-xy\end{cases}\left(1\right)}\)

Thay (1) vào A, ta có :

\(A=\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)

\(=\frac{yz}{x^2+yz-xy-xz}+\frac{xz}{y^2+xz-yz-xy}+\frac{xy}{z^2+xy-yz-xz}\)

\(=\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-z\right)\left(y-x\right)}+\frac{xy}{\left(z-y\right)\left(z-x\right)}\)

\(=\frac{yz}{\left(x-y\right)\left(x-z\right)}-\frac{xz}{\left(y-z\right)\left(x-y\right)}+\frac{xy}{\left(z-y\right)\left(z-x\right)}\)

\(=\frac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(=\frac{\left(x-y\right)\left(y-z\right)\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=1\)

14 tháng 10 2019

a) \(x:y:z=2:3:4\)=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)=>\(\frac{x^2}{4}=\frac{2y^2}{18}=\frac{z^2}{16}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{x^2}{4}=\frac{2y^2}{18}=\frac{z^2}{16}\)\(=\frac{x^2-2y^2+z^2}{4-18+16}\)\(=\frac{x^2-2y^2+z^2}{2}\)(1)

Ta lại có :\(\frac{x}{2}=\frac{y}{3}=>\frac{x}{2}.\frac{y}{3}=\frac{y^2}{9}\)=> \(\frac{2xy}{12}=\frac{y^2}{9}=\frac{2xy+y^2}{12+9}=\frac{2xy+y^2}{21}\)(2)

Từ (1),(2) có: \(\frac{x^2-2y^2+z^2}{2}=\frac{2xy+y^2}{21}\)=>\(\frac{x^2-2y^2+z^2}{2xy+y^2}=\frac{2}{21}\)

18 tháng 11 2019

Ta có : M = \(\frac{x+y}{z}+\frac{x+z}{y}=\frac{y+z}{x}\)

\(\Rightarrow M+3=\left(\frac{x+y}{z}+1\right)+\left(\frac{x+z}{y}+1\right)+\left(\frac{y+z}{x}+1\right)\)

\(\Rightarrow M+3=\frac{x+y+z}{z}+\frac{x+y+z}{y}+\frac{x+y+z}{x}\)

\(\Rightarrow M+3=\left(x+y+z\right).\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Rightarrow M+3=2020.\frac{1}{202}\)

=> M + 3 = 10

=> M = 7

Vậy M = 7

18 tháng 11 2019

b) Ta có : \(A=\frac{2}{3^2}+\frac{2}{5^2}+\frac{2}{7^2}+...+\frac{2}{2017^2}\)

\(=\frac{2}{3.3}+\frac{2}{5.5}+\frac{2}{7.7}+...+\frac{2}{2017.2017}\)

\(< \frac{2}{\left(3+1\right)\left(3-1\right)}+\frac{2}{\left(5-1\right)\left(5+1\right)}+\frac{2}{\left(7-1\right)\left(7+1\right)}+...+\frac{2}{\left(2017-1\right)\left(2016-1\right)}\)

\(=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2016.2018}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2016}-\frac{1}{2018}\)

\(=\frac{1}{2}-\frac{1}{2018}\)

\(=\frac{1008}{2018}=\frac{504}{1009}\)

=> \(A< \frac{504}{1009}\left(\text{ĐPCM}\right)\)

7 tháng 2 2019

Nhanh k cho nè

7 tháng 2 2019

làm lần lượt nhá,dài dòng quá khó coi.ahihihi!

\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{7\left(\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)

\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}=\frac{1}{4}\)