K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 11 2020

ĐKXĐ: \(x>0\)

\(\Leftrightarrow log_2^22x+log_2\left(\frac{2x}{8}\right)-9< 0\)

\(\Leftrightarrow log^2_22x+log_22x-12< 0\)

\(\Leftrightarrow-4< log_22x< 3\)

\(\Leftrightarrow\frac{1}{32}< x< 4\)

NV
13 tháng 4 2020

ĐKXĐ: \(x>0\)

\(\Leftrightarrow log_2^2\left(2x\right)+log_2\left(2x\right)-log_28-9< 0\)

\(\Leftrightarrow log_2^2\left(2x\right)+log_2\left(2x\right)-12< 0\)

\(\Leftrightarrow\left(log_2\left(2x\right)+4\right)\left(log_2\left(2x\right)-3\right)< 0\)

\(\Leftrightarrow-4< log_2\left(2x\right)< 3\)

\(\Leftrightarrow\frac{1}{16}< 2x< 8\Leftrightarrow\frac{1}{32}< x< 4\)

AH
Akai Haruma
Giáo viên
9 tháng 11 2017

Lời giải:

a) ĐKXĐ:......

Ta có: \(\log_{2x+1}(3-x^2)=2\)

\(\Leftrightarrow 3-x^2=(2x+1)^2\)

\(\Leftrightarrow 5x^2+4x-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2+\sqrt{14}}{5}\\x=\dfrac{-2-\sqrt{14}}{5}\end{matrix}\right.\)

Kết hợp với đkxđ suy ra \(x=\frac{-2+\sqrt{14}}{5}\) là nghiệm

b) ĐKXĐ:....

Đặt \(2-x=a\Rightarrow \log_2(2a+1)=a\) (\(a>\frac{-1}{2}\))

\(\Leftrightarrow 2a+1=2^a\)

Xét hàm \(y(a)=2^a-2a-1\)

\(\Rightarrow y'=\ln 2.2^a-2=0\Leftrightarrow a=\log_2\left(\frac{2}{\ln 2}\right)\)

Lập bảng biến thiên của $y(a)$ với $a>\frac{-1}{2}$ ta thấy đồ thì của $y(a)$ cắt đường thẳng \(y=0\) tại hai điểm, tức là pt có hai nghiệm. Trong đó một nghiệm thuộc \((-\frac{1}{2}; \log_2\left(\frac{2}{\ln 2}\right))\) và nghiệm khác thuộc \((\log_2\left(\frac{2}{\ln 2}\right);+\infty)\)

Thực hiện shift-solve ta thu được \(a=0\) hoặc \(a\approx 2,66\)

AH
Akai Haruma
Giáo viên
9 tháng 11 2017

Câu c)

ĐKXĐ: \(x>-1\)

Ta có: \(\log_2(x+1)=4-3x\Leftrightarrow x+1=2^{4-3x}\)

Ta thấy:

\((x+1)'=1>0\) nên hàm vế trái đồng biến trên KXĐ

\((2^{4-3x})'=-3.\ln 2.2^{4-3x}<0\) nên hàm vế phải nghịch biến trên KXĐ

Do đó, PT chỉ có thể có duy nhất một nghiệm

Thấy \(x=1\) thỏa mãn nên $x=1$ là nghiệm duy nhất của phương trình

NV
14 tháng 4 2019

ĐKXĐ: \(x>0\)

\(log_{a^4}x-log_{a^2}x+log_ax=\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{4}log_ax-\frac{1}{2}log_ax+log_ax=\frac{3}{4}\)

\(\Leftrightarrow\frac{3}{4}log_ax=\frac{3}{4}\)

\(\Leftrightarrow log_ax=1\)

\(\Rightarrow x=a\)

NV
10 tháng 11 2018

\(a^2+4b^2=23ab\Rightarrow a^2+4ab+4b^2=27ab\Rightarrow\left(a+2b\right)^2=27ab\)

\(\Rightarrow\dfrac{\left(a+2b\right)^2}{9}=3ab\)\(\Rightarrow\left(\dfrac{a+2b}{3}\right)^2=3ab\)

Lấy logarit cơ số c hai vế:

\(log_c\left(\dfrac{a+2b}{3}\right)^2=log_c\left(3ab\right)\)

\(\Rightarrow2log_c\dfrac{a+2b}{3}=log_c3+log_ca+log_cb\)

\(\Rightarrow log_c\dfrac{a+2b}{3}=\dfrac{1}{2}\left(log_ca+log_cb+log_c3\right)\)

11 tháng 11 2018

Bạn ơi tại sao có khoảng trống vậy??? khoảng trống ấy là gì

18 tháng 8 2018

Điều kiện xác định : 3\(^x\)>2

Ta có: \(\log_2\left(4.3^x-6\right)=\log_2\left(2\sqrt{2}\right).\log_{2\sqrt{2}}\left(4.3^x-6\right)\)

\(\log_2\left(4.3^x-6\right)-\dfrac{3}{2}\log_{2\sqrt{2}}\left(9^x-6\right)=1\left(1\right)\)\(\Leftrightarrow\log_2\left(2\sqrt{2}\right)\log_{2\sqrt{2}}\left(4.3^x-6\right)-\dfrac{3}{2}\log_{2\sqrt{2}}\left(9^x-6\right)=1\)

\(\Rightarrow\dfrac{3}{2}\log_{2\sqrt{2}}\left(4.3^x-6\right)-\dfrac{3}{2}\log_{2\sqrt{2}}\left(9^x-6\right)=1\)\(\Leftrightarrow\dfrac{3}{2}[\log_{2\sqrt{2}}\left(4.3^x-6\right)-\log_{2\sqrt{2}}\left(9^X-6\right)]=1\)

\(\Leftrightarrow\log_{2\sqrt{2}}\left(\dfrac{4.3^X-6}{9^X-6}\right)=\dfrac{2}{3}\)\(\Leftrightarrow\log_{2\sqrt{2}}\left(\dfrac{4.3^X-6}{9^X-6}\right)=\log_{2\sqrt{2}}\left(2\right)\)

\(\Leftrightarrow\dfrac{4.3^X-6}{9^X-6}=2\Leftrightarrow4.3^X-6=2.9^X-12\)\(\Leftrightarrow2.(3^X)^2-4.3^X-6=0\Rightarrow\left[{}\begin{matrix}3^X=3\left(TM\right)\\3^X=-1\left(loai\right)\end{matrix}\right.\)

\(\Rightarrow x=1.\)Vậy x=1 là nghiệm của phương trình (1)

20 tháng 12 2015

Có cần đặt giá trị tuyệt đối không bạn ??

20 tháng 12 2015

Hình như. Kết quả sai rồi á